Noetherian Maxwell spaces and Bessel-Hagen factors
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 68-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain conditions for some classes of Maxwell spaces to be Noetherian. We also find Bessel-Hagen factors for some subgroups of the Poincaré group.
@article{TM_2012_278_a6,
     author = {E. S. Erina and M. A. Parinov},
     title = {Noetherian {Maxwell} spaces and {Bessel-Hagen} factors},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {68--74},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a6/}
}
TY  - JOUR
AU  - E. S. Erina
AU  - M. A. Parinov
TI  - Noetherian Maxwell spaces and Bessel-Hagen factors
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 68
EP  - 74
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a6/
LA  - ru
ID  - TM_2012_278_a6
ER  - 
%0 Journal Article
%A E. S. Erina
%A M. A. Parinov
%T Noetherian Maxwell spaces and Bessel-Hagen factors
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 68-74
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a6/
%G ru
%F TM_2012_278_a6
E. S. Erina; M. A. Parinov. Noetherian Maxwell spaces and Bessel-Hagen factors. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 68-74. http://geodesic.mathdoc.fr/item/TM_2012_278_a6/

[1] Parinov M.A., Prostranstva Einshteina–Maksvella i uravneniya Lorentsa, Izd-vo IvGU, Ivanovo, 2003

[2] Ivanova A.S., Parinov M.A., “Pervye integraly uravnenii Lorentsa dlya nekotorykh klassov elektromagnitnykh polei”, Tr. MIAN, 236, 2002, 197–203 | MR | Zbl

[3] Noether E., “Invariante Variationsprobleme”, Nachr. König. Ges. Wiss. Göttingen. Math.-phys. Kl., 1918, 235–257 | Zbl

[4] Bessel-Hagen E., “Über die Erhaltungssätze der Elektrodynamik”, Math. Ann., 84 (1921), 258–276 | DOI | MR | Zbl

[5] Parinov M.A., “Klassy prostranstv Maksvella, dopuskayuschikh podgruppy gruppy Puankare”, Fund. i prikl. matematika, 10:1 (2004), 183–237 | MR | Zbl

[6] Parinov M.A., “Shest klassov prostranstv Maksvella, dopuskayuschikh netrivialnye gruppy simmetrii”, Vestn. Voronezh. gos. un-ta. Fizika. Matematika, 2006, no. 1, 170–171

[7] Belko I.V., “Podgruppy gruppy Lorentsa–Puankare”, Izv. AN BSSR. Ser. fiz.-mat. nauk, 1971, no. 1, 5–13 | MR | Zbl

[8] Emelyanova I.S., Problema “simmetriya — integraly dvizheniya” v analiticheskoi dinamike, NNGU, Nizhnii Novgorod, 1992 | MR

[9] Parinov M.A., “Klassifikatsiya potentsialnykh struktur na prostranstve Minkovskogo po podgruppam gruppy Puankare”, Fundamentalnaya i prikladnaya matematika, 12:7 (2006), 177–225 | MR

[10] Kolesova V.A., Parinov M.A., “O nëterovykh prostranstvakh Maksvella”, Matematika i ee prilozheniya: Zhurn. Ivanov. mat. o-va., 2007, no. 1, 7–12

[11] Kocheva N.A., Parinov M.A., “Faktory Bessel-Khagena dlya nekotorykh podgrupp gruppy Puankare”, Matematika i ee prilozheniya: Zhurn. Ivanov. mat. o-va., 2010, no. 1, 41–48

[12] Parinov M.A., Vvedenie v simplekticheskuyu geometriyu, Ucheb. posobie, IvGU, Ivanovo, 1994