Dynamically ordered energy function for Morse--Smale diffeomorphisms on $3$-manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 34-48

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with arbitrary Morse–Smale diffeomorphisms in dimension $3$ and extends ideas from the authors' previous studies where the gradient-like case was considered. We introduce a kind of Morse–Lyapunov function, called dynamically ordered, which fits well the dynamics of a diffeomorphism. The paper is devoted to finding conditions for the existence of such an energy function, that is, a function whose set of critical points coincides with the nonwandering set of the considered diffeomorphism. We show that necessary and sufficient conditions for the existence of a dynamically ordered energy function reduce to the type of the embedding of one-dimensional attractors and repellers, each of which is a union of zero- and one-dimensional unstable (stable) manifolds of periodic orbits of a given Morse–Smale diffeomorphism on a closed $3$-manifold.
@article{TM_2012_278_a3,
     author = {V. Z. Grines and F. Laudenbach and O. V. Pochinka},
     title = {Dynamically ordered energy function for {Morse--Smale} diffeomorphisms on $3$-manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {34--48},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a3/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - F. Laudenbach
AU  - O. V. Pochinka
TI  - Dynamically ordered energy function for Morse--Smale diffeomorphisms on $3$-manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 34
EP  - 48
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a3/
LA  - ru
ID  - TM_2012_278_a3
ER  - 
%0 Journal Article
%A V. Z. Grines
%A F. Laudenbach
%A O. V. Pochinka
%T Dynamically ordered energy function for Morse--Smale diffeomorphisms on $3$-manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 34-48
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a3/
%G ru
%F TM_2012_278_a3
V. Z. Grines; F. Laudenbach; O. V. Pochinka. Dynamically ordered energy function for Morse--Smale diffeomorphisms on $3$-manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 34-48. http://geodesic.mathdoc.fr/item/TM_2012_278_a3/