Dynamically ordered energy function for Morse--Smale diffeomorphisms on $3$-manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 34-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with arbitrary Morse–Smale diffeomorphisms in dimension $3$ and extends ideas from the authors' previous studies where the gradient-like case was considered. We introduce a kind of Morse–Lyapunov function, called dynamically ordered, which fits well the dynamics of a diffeomorphism. The paper is devoted to finding conditions for the existence of such an energy function, that is, a function whose set of critical points coincides with the nonwandering set of the considered diffeomorphism. We show that necessary and sufficient conditions for the existence of a dynamically ordered energy function reduce to the type of the embedding of one-dimensional attractors and repellers, each of which is a union of zero- and one-dimensional unstable (stable) manifolds of periodic orbits of a given Morse–Smale diffeomorphism on a closed $3$-manifold.
@article{TM_2012_278_a3,
     author = {V. Z. Grines and F. Laudenbach and O. V. Pochinka},
     title = {Dynamically ordered energy function for {Morse--Smale} diffeomorphisms on $3$-manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {34--48},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a3/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - F. Laudenbach
AU  - O. V. Pochinka
TI  - Dynamically ordered energy function for Morse--Smale diffeomorphisms on $3$-manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 34
EP  - 48
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a3/
LA  - ru
ID  - TM_2012_278_a3
ER  - 
%0 Journal Article
%A V. Z. Grines
%A F. Laudenbach
%A O. V. Pochinka
%T Dynamically ordered energy function for Morse--Smale diffeomorphisms on $3$-manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 34-48
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a3/
%G ru
%F TM_2012_278_a3
V. Z. Grines; F. Laudenbach; O. V. Pochinka. Dynamically ordered energy function for Morse--Smale diffeomorphisms on $3$-manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 34-48. http://geodesic.mathdoc.fr/item/TM_2012_278_a3/

[1] Bonatti C., Grines V., Medvedev V., Pécou E., “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology Appl., 117 (2002), 335–344 | DOI | MR | Zbl

[2] Bonatti Kh., Grines V.Z., Pochinka O.V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Tr. MIAN, 250, 2005, 5–53 | MR | Zbl

[3] Grines V.Z., Laudenbakh F., Pochinka O.V., “Energeticheskaya funktsiya dlya gradientnopodobnykh diffeomorfizmov na 3-mnogoobraziyakh”, DAN, 422:3 (2008), 299–301 | MR | Zbl

[4] Grines V., Laudenbach F., Pochinka O., “Self-indexing energy function for Morse–Smale diffeomorphisms on 3-manifolds”, Moscow Math. J., 9:4 (2009), 801–821 | MR | Zbl

[5] Grines V.Z., Zhuzhoma E.V., Medvedev V.S., “Novye sootnosheniya dlya sistem Morsa–Smeila s trivialno vlozhennymi odnomernymi separatrisami”, Mat. sb., 194:7 (2003), 25–56 | DOI | MR | Zbl

[6] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[7] Palis J., “On Morse–Smale dynamical systems”, Topology, 8 (1969), 385–404 | DOI | MR

[8] Pixton D., “Wild unstable manifolds”, Topology, 16 (1977), 167–172 | DOI | MR | Zbl

[9] Robinson C., Dynamical systems: Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd ed., CRC Press, Boca Raton, FL, 1999 | MR | Zbl

[10] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | MR

[11] Smale S., “On gradient dynamical systems”, Ann. Math. Ser. 2, 74 (1961), 199–206 | DOI | MR | Zbl

[12] Waldhausen F., “On irreducible 3-manifolds which are sufficiently large”, Ann. Math. Ser. 2, 87 (1968), 56–88 | DOI | MR | Zbl