Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_278_a3, author = {V. Z. Grines and F. Laudenbach and O. V. Pochinka}, title = {Dynamically ordered energy function for {Morse--Smale} diffeomorphisms on $3$-manifolds}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {34--48}, publisher = {mathdoc}, volume = {278}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a3/} }
TY - JOUR AU - V. Z. Grines AU - F. Laudenbach AU - O. V. Pochinka TI - Dynamically ordered energy function for Morse--Smale diffeomorphisms on $3$-manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 34 EP - 48 VL - 278 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_278_a3/ LA - ru ID - TM_2012_278_a3 ER -
%0 Journal Article %A V. Z. Grines %A F. Laudenbach %A O. V. Pochinka %T Dynamically ordered energy function for Morse--Smale diffeomorphisms on $3$-manifolds %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 34-48 %V 278 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2012_278_a3/ %G ru %F TM_2012_278_a3
V. Z. Grines; F. Laudenbach; O. V. Pochinka. Dynamically ordered energy function for Morse--Smale diffeomorphisms on $3$-manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 34-48. http://geodesic.mathdoc.fr/item/TM_2012_278_a3/
[1] Bonatti C., Grines V., Medvedev V., Pécou E., “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology Appl., 117 (2002), 335–344 | DOI | MR | Zbl
[2] Bonatti Kh., Grines V.Z., Pochinka O.V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Tr. MIAN, 250, 2005, 5–53 | MR | Zbl
[3] Grines V.Z., Laudenbakh F., Pochinka O.V., “Energeticheskaya funktsiya dlya gradientnopodobnykh diffeomorfizmov na 3-mnogoobraziyakh”, DAN, 422:3 (2008), 299–301 | MR | Zbl
[4] Grines V., Laudenbach F., Pochinka O., “Self-indexing energy function for Morse–Smale diffeomorphisms on 3-manifolds”, Moscow Math. J., 9:4 (2009), 801–821 | MR | Zbl
[5] Grines V.Z., Zhuzhoma E.V., Medvedev V.S., “Novye sootnosheniya dlya sistem Morsa–Smeila s trivialno vlozhennymi odnomernymi separatrisami”, Mat. sb., 194:7 (2003), 25–56 | DOI | MR | Zbl
[6] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR
[7] Palis J., “On Morse–Smale dynamical systems”, Topology, 8 (1969), 385–404 | DOI | MR
[8] Pixton D., “Wild unstable manifolds”, Topology, 16 (1977), 167–172 | DOI | MR | Zbl
[9] Robinson C., Dynamical systems: Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd ed., CRC Press, Boca Raton, FL, 1999 | MR | Zbl
[10] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | MR
[11] Smale S., “On gradient dynamical systems”, Ann. Math. Ser. 2, 74 (1961), 199–206 | DOI | MR | Zbl
[12] Waldhausen F., “On irreducible 3-manifolds which are sufficiently large”, Ann. Math. Ser. 2, 87 (1968), 56–88 | DOI | MR | Zbl