Interaction of the folded Whitney umbrella and swallowtail in slow--fast systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 29-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The graph of a first integral of a smooth slow-fast system with two slow variables is a singular surface in the three-dimensional space; the variation of an external parameter on which the system depends gives rise to perestroikas ($=$transitions) of this surface. We find a normal form and present figures of the perestroika that describes the interaction between the swallowtail and folded Whitney umbrella on the graph of a first integral of a generic one-parameter family of such systems.
@article{TM_2012_278_a2,
     author = {I. A. Bogaevsky},
     title = {Interaction of the folded {Whitney} umbrella and swallowtail in slow--fast systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {29--33},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a2/}
}
TY  - JOUR
AU  - I. A. Bogaevsky
TI  - Interaction of the folded Whitney umbrella and swallowtail in slow--fast systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 29
EP  - 33
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a2/
LA  - ru
ID  - TM_2012_278_a2
ER  - 
%0 Journal Article
%A I. A. Bogaevsky
%T Interaction of the folded Whitney umbrella and swallowtail in slow--fast systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 29-33
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a2/
%G ru
%F TM_2012_278_a2
I. A. Bogaevsky. Interaction of the folded Whitney umbrella and swallowtail in slow--fast systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 29-33. http://geodesic.mathdoc.fr/item/TM_2012_278_a2/

[1] Arnold V.I., “Kontaktnaya struktura, relaksatsionnye kolebaniya i osobye tochki neyavnykh differentsialnykh uravnenii”, Izbrannoe–60, Fazis, M., 1997, 391–396 | MR

[2] Arnold V.I., Teoriya katastrof, 3-e izd., Nauka, M., 1990 | MR

[3] Arnold V.I., Varchenko A.N., Gusein-Zade S.M., Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[4] Davydov A.A., “Normalnaya forma medlennykh dvizhenii uravneniya relaksatsionnogo tipa i rassloeniya binomialnykh poverkhnostei”, Mat. sb., 132:1 (1987), 131–139 | MR | Zbl

[5] Davydov A.A., “Normalnaya forma differentsialnogo uravneniya, ne razreshennogo otnositelno proizvodnoi, v okrestnosti ego osoboi tochki”, Funkts. analiz i ego pril., 19:2 (1985), 1–10 | MR | Zbl

[6] Zakalyukin V.M., Remizov A.O., “Lezhandrovy osobennosti v sistemakh neyavnykh obyknovennykh differentsialnykh uravnenii i bystro-medlennykh dinamicheskikh sistemakh”, Tr. MIAN, 261, 2008, 140–153 | MR | Zbl

[7] Bruce J.W., “A note on first order differential equations of degree greater than one and wavefront evolution”, Bull. London Math. Soc., 16:2 (1984), 139–144 | DOI | MR | Zbl

[8] Davydov A.A., “Whitney umbrella and slow-motion bifurcations of relaxation-type equations”, J. Math. Sci., 126:4 (2005), 1251–1258 | DOI | MR | Zbl

[9] Hayakawa A., Ishikawa G., Izumiya S., Yamaguchi K., “Classification of generic integral diagrams and first order ordinary differential equations”, Int. J. Math., 5:4 (1994), 447–489 | DOI | MR | Zbl