Interaction of the folded Whitney umbrella and swallowtail in slow–fast systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 29-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The graph of a first integral of a smooth slow-fast system with two slow variables is a singular surface in the three-dimensional space; the variation of an external parameter on which the system depends gives rise to perestroikas ($=$transitions) of this surface. We find a normal form and present figures of the perestroika that describes the interaction between the swallowtail and folded Whitney umbrella on the graph of a first integral of a generic one-parameter family of such systems.
@article{TM_2012_278_a2,
     author = {I. A. Bogaevsky},
     title = {Interaction of the folded {Whitney} umbrella and swallowtail in slow{\textendash}fast systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {29--33},
     year = {2012},
     volume = {278},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a2/}
}
TY  - JOUR
AU  - I. A. Bogaevsky
TI  - Interaction of the folded Whitney umbrella and swallowtail in slow–fast systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 29
EP  - 33
VL  - 278
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a2/
LA  - ru
ID  - TM_2012_278_a2
ER  - 
%0 Journal Article
%A I. A. Bogaevsky
%T Interaction of the folded Whitney umbrella and swallowtail in slow–fast systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 29-33
%V 278
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a2/
%G ru
%F TM_2012_278_a2
I. A. Bogaevsky. Interaction of the folded Whitney umbrella and swallowtail in slow–fast systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 29-33. http://geodesic.mathdoc.fr/item/TM_2012_278_a2/

[1] Arnold V.I., “Kontaktnaya struktura, relaksatsionnye kolebaniya i osobye tochki neyavnykh differentsialnykh uravnenii”, Izbrannoe–60, Fazis, M., 1997, 391–396 | MR

[2] Arnold V.I., Teoriya katastrof, 3-e izd., Nauka, M., 1990 | MR

[3] Arnold V.I., Varchenko A.N., Gusein-Zade S.M., Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[4] Davydov A.A., “Normalnaya forma medlennykh dvizhenii uravneniya relaksatsionnogo tipa i rassloeniya binomialnykh poverkhnostei”, Mat. sb., 132:1 (1987), 131–139 | MR | Zbl

[5] Davydov A.A., “Normalnaya forma differentsialnogo uravneniya, ne razreshennogo otnositelno proizvodnoi, v okrestnosti ego osoboi tochki”, Funkts. analiz i ego pril., 19:2 (1985), 1–10 | MR | Zbl

[6] Zakalyukin V.M., Remizov A.O., “Lezhandrovy osobennosti v sistemakh neyavnykh obyknovennykh differentsialnykh uravnenii i bystro-medlennykh dinamicheskikh sistemakh”, Tr. MIAN, 261, 2008, 140–153 | MR | Zbl

[7] Bruce J.W., “A note on first order differential equations of degree greater than one and wavefront evolution”, Bull. London Math. Soc., 16:2 (1984), 139–144 | DOI | MR | Zbl

[8] Davydov A.A., “Whitney umbrella and slow-motion bifurcations of relaxation-type equations”, J. Math. Sci., 126:4 (2005), 1251–1258 | DOI | MR | Zbl

[9] Hayakawa A., Ishikawa G., Izumiya S., Yamaguchi K., “Classification of generic integral diagrams and first order ordinary differential equations”, Int. J. Math., 5:4 (1994), 447–489 | DOI | MR | Zbl