On the calculation of the polar cone of the solution set of a~differential inclusion
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 178-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general form of the polar cone is obtained for the solution set of an arbitrary differential inclusion such that the graph of its right-hand side is a convex closed cone and the solutions take values in a reflexive Banach space.
@article{TM_2012_278_a16,
     author = {E. S. Polovinkin},
     title = {On the calculation of the polar cone of the solution set of a~differential inclusion},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {178--187},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a16/}
}
TY  - JOUR
AU  - E. S. Polovinkin
TI  - On the calculation of the polar cone of the solution set of a~differential inclusion
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 178
EP  - 187
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a16/
LA  - ru
ID  - TM_2012_278_a16
ER  - 
%0 Journal Article
%A E. S. Polovinkin
%T On the calculation of the polar cone of the solution set of a~differential inclusion
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 178-187
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a16/
%G ru
%F TM_2012_278_a16
E. S. Polovinkin. On the calculation of the polar cone of the solution set of a~differential inclusion. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 178-187. http://geodesic.mathdoc.fr/item/TM_2012_278_a16/

[1] Polovinkin E.S., Smirnov G.V., “Differentsirovanie mnogoznachnykh otobrazhenii i svoistva reshenii differentsialnykh vklyuchenii”, DAN SSSR, 288:2 (1986), 296–301 | MR | Zbl

[2] Polovinkin E.S., Smirnov G.V., “Ob odnom podkhode k differentsirovaniyu mnogoznachnykh otobrazhenii i neobkhodimye usloviya optimalnosti reshenii differentsialnykh vklyuchenii”, Dif. uravneniya, 22:6 (1986), 944–954 | MR | Zbl

[3] Polovinkin E.S., Smirnov G.V., “O zadache bystrodeistviya dlya differentsialnykh vklyuchenii”, Dif. uravneniya, 22:8 (1986), 1351–1365 | MR | Zbl

[4] Polovinkin E.S., “Neobkhodimye usloviya v zadache optimizatsii s differentsialnym vklyucheniem”, Tr. MIAN, 211, 1995, 387–400 | MR | Zbl

[5] Polovinkin E.S., Balashov M.V., Elementy vypuklogo i silno vypuklogo analiza, 2-e izd., Fizmatlit, M., 2007 | Zbl

[6] Dunford N., Pettis B.J., “Linear operations on summable functions”, Trans. Amer. Math. Soc., 47 (1940), 323–392 | DOI | MR | Zbl

[7] Edvards R., Funktsionalnyi analiz: Teoriya i prilozheniya, Mir, M., 1969

[8] Castaing C., “Sur les multi-applications mesurables”, Rev. Franç. Inform. Rech. Opér., 1:1 (1967), 91–126 | MR | Zbl

[9] Danford N., Shvarts Dzh.T., Lineinye operatory: Obschaya teoriya, Izd-vo inostr. lit., M., 1962; УРСС, 2004

[10] Diestel J., “Remarks on weak compactness in $L_1(\mu , X)$”, Glasgow Math. J., 18:1 (1977), 87–91 | DOI | MR | Zbl

[11] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[12] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhäuser, Boston; Basel; Berlin, 1990 | MR | Zbl