Stability criterion for critical points of a~model in micromagnetics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 170-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

A recent modification of a classic Landau–Lifshitz equation that includes the so-called spin-transfer torque is widely recognized in physics community as a model of magnetization dynamics in certain nanodevices. Motivated by some experimental evidence, we introduce a generalization of this model, coupled Landau–Lifshitz equations with spin-transfer torque terms, and analyze it from dynamical systems standpoint. An explicit stability criterion for the critical points in terms of all parameters of the system is derived and illustrated with stability diagrams. Our analysis provides certain guidelines for the design of magnetic nanodevices with optimized response to control parameters.
@article{TM_2012_278_a15,
     author = {Lydia Novozhilova and Sergei Urazhdin},
     title = {Stability criterion for critical points of a~model in micromagnetics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {170--177},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a15/}
}
TY  - JOUR
AU  - Lydia Novozhilova
AU  - Sergei Urazhdin
TI  - Stability criterion for critical points of a~model in micromagnetics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 170
EP  - 177
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a15/
LA  - en
ID  - TM_2012_278_a15
ER  - 
%0 Journal Article
%A Lydia Novozhilova
%A Sergei Urazhdin
%T Stability criterion for critical points of a~model in micromagnetics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 170-177
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a15/
%G en
%F TM_2012_278_a15
Lydia Novozhilova; Sergei Urazhdin. Stability criterion for critical points of a~model in micromagnetics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 170-177. http://geodesic.mathdoc.fr/item/TM_2012_278_a15/

[1] Bertotti G., Mayergoyz I.D., Serpico C., Nonlinear magnetization dynamics in nanosystems, Elsevier, Amsterdam, 2009 | MR | Zbl

[2] Slonczewski J.C., “Current-driven excitation of magnetic multilayers”, J. Magn. Magn. Mater., 159 (1996), L1–L7 | DOI

[3] Lim W.L., Anthony N., Higgins A., Urazhdin S., “Thermal dynamics in symmetric magnetic nanopillars driven by spin transfer”, Appl. Phys. Lett., 92 (2008), 172501 | DOI

[4] Urazhdin S., “Dynamical coupling between ferromagnets due to spin transfer torque: Analytical calculations and numerical simulations”, Phys. Rev. B, 78 (2008), 060405 | DOI

[5] Guckenheimer J., Holmes P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, New York, 1983 | MR | Zbl