Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_277_a17, author = {A. M. Tarasyev and A. A. Usova}, title = {Stabilizing the {Hamiltonian} system for constructing optimal trajectories}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {257--274}, publisher = {mathdoc}, volume = {277}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a17/} }
TY - JOUR AU - A. M. Tarasyev AU - A. A. Usova TI - Stabilizing the Hamiltonian system for constructing optimal trajectories JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 257 EP - 274 VL - 277 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_277_a17/ LA - ru ID - TM_2012_277_a17 ER -
A. M. Tarasyev; A. A. Usova. Stabilizing the Hamiltonian system for constructing optimal trajectories. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 257-274. http://geodesic.mathdoc.fr/item/TM_2012_277_a17/
[1] Aseev S.M., Kryazhimskii A.V., Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta, Tr. MIAN, 257, Nauka, M., 2007 | MR | Zbl
[2] Arrow K.J., “Applications of control theory to economic growth”, Mathematics of the decision sciences, Part 2, Am. Math. Soc., Providence, RI, 1968, 85–119 | MR | Zbl
[3] Ayres R.U., Warr B., The economic growth engine: How energy and work drive material prosperity, Edward Elgar Publ., Cheltenham, 2009
[4] Balder E.J., “An existence result for optimal economic growth problems”, J. Math. Anal. Appl., 95 (1983), 195–213 | DOI | MR | Zbl
[5] Falcone M., “A numerical approach to the infinite horizon problem of deterministic control theory”, Appl. Math. and Optim., 15 (1987), 1–13 | DOI | MR | Zbl
[6] Feichtinger G., Veliov V.M., “On a distributed control problem arising in dynamic optimization of a fixed-size population”, SIAM J. Optim., 18:3 (2007), 980–1003 | DOI | MR | Zbl
[7] Grass D., Caulkins J.P., Feichtinger G., Tragler G., Behrens D.A., Optimal control of nonlinear processes. With applications in drugs, corruption, and terror, Springer, Berlin, 2008 | MR
[8] Grossman G.M., Helpman E., Innovation and growth in the global economy, MIT Press, Cambridge, MA, 1993
[9] Hartman P., Ordinary differential equations, J. Wiley and Sons, New York, 1964 | MR | Zbl
[10] Krasovskii A.A., Tarasev A.M., “Dinamicheskaya optimizatsiya investitsii v modelyakh ekonomicheskogo rosta”, Avtomatika i telemekhanika, 2007, no. 10, 38–52 | MR | Zbl
[11] Krasovskii A.A., Tarasev A.M., “Svoistva gamiltonovykh sistem v printsipe maksimuma Pontryagina dlya zadach ekonomicheskogo rosta”, Tr. MIAN, 262, 2008, 127–145 | MR | Zbl
[12] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988 | MR | Zbl
[13] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl
[14] Rockafellar R.T., “Hamilton–Jacobi theory and parametric analysis in fully convex problems of optimal control”, J. Global Optim., 28 (2004), 419–431 | DOI | MR | Zbl
[15] Sanderson W., The SEDIM model: Version 0.1, IIASA Interim Rep. IR-04-041. Laxenburg (Austria), 2004
[16] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical systems theory and economics, V. 1, Springer, Berlin, 1969, 241–292 | DOI | MR
[17] Solow R.M., Growth theory: An exposition, Oxford Univ. Press, New York, 1970
[18] Tarasev A.M., Usova A.A., “Postroenie regulyatora dlya gamiltonovoi sistemy dvukhsektornoi modeli ekonomicheskogo rosta”, Tr. MIAN, 271, 2010, 278–298 | MR
[19] Vatanabe Ch., Reshmin S.A., Tarasev A.M., “Dinamicheskaya model protsessa investitsii v nauchno-tekhnicheskie razrabotki”, PMM, 65:3 (2001), 408–425 | MR