Stabilizing the Hamiltonian system for constructing optimal trajectories
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 257-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

An infinite-horizon optimal control problem based on an economic growth model is studied. The goal in the problem is to optimize the mechanisms of investment in basic production assets in order to increase the growth rate of the consumption level. The main output variable – the gross domestic product (GDP) – depends on three production factors: capital stock, human capital, and useful work. The first two factors are endogenous variables of the model, and the useful work is an exogenous factor. The dependence of the GDP on the production factors is described by the Cobb–Douglas power-type production function. The economic system under consideration is assumed to be closed, so the GDP is distributed between consumption and investment in the capital stock and human capital. The optimal control problem consists in determining optimal investment strategies that maximize the integral discounted relative consumption index on an infinite time interval. A solution to the problem is constructed on the basis of the Pontryagin maximum principle adapted to infinite-horizon problems. We examine the questions of existence and uniqueness of a solution, verify necessary and sufficient optimality conditions, and perform a qualitative analysis of Hamiltonian systems on the basis of which we propose an algorithm for constructing optimal trajectories. This algorithm uses information on solutions obtained by means of a nonlinear regulator. Finally, we estimate the accuracy of the algorithm with respect to the integral cost functional of the control process.
@article{TM_2012_277_a17,
     author = {A. M. Tarasyev and A. A. Usova},
     title = {Stabilizing the {Hamiltonian} system for constructing optimal trajectories},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {257--274},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a17/}
}
TY  - JOUR
AU  - A. M. Tarasyev
AU  - A. A. Usova
TI  - Stabilizing the Hamiltonian system for constructing optimal trajectories
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 257
EP  - 274
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_277_a17/
LA  - ru
ID  - TM_2012_277_a17
ER  - 
%0 Journal Article
%A A. M. Tarasyev
%A A. A. Usova
%T Stabilizing the Hamiltonian system for constructing optimal trajectories
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 257-274
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_277_a17/
%G ru
%F TM_2012_277_a17
A. M. Tarasyev; A. A. Usova. Stabilizing the Hamiltonian system for constructing optimal trajectories. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 257-274. http://geodesic.mathdoc.fr/item/TM_2012_277_a17/

[1] Aseev S.M., Kryazhimskii A.V., Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta, Tr. MIAN, 257, Nauka, M., 2007 | MR | Zbl

[2] Arrow K.J., “Applications of control theory to economic growth”, Mathematics of the decision sciences, Part 2, Am. Math. Soc., Providence, RI, 1968, 85–119 | MR | Zbl

[3] Ayres R.U., Warr B., The economic growth engine: How energy and work drive material prosperity, Edward Elgar Publ., Cheltenham, 2009

[4] Balder E.J., “An existence result for optimal economic growth problems”, J. Math. Anal. Appl., 95 (1983), 195–213 | DOI | MR | Zbl

[5] Falcone M., “A numerical approach to the infinite horizon problem of deterministic control theory”, Appl. Math. and Optim., 15 (1987), 1–13 | DOI | MR | Zbl

[6] Feichtinger G., Veliov V.M., “On a distributed control problem arising in dynamic optimization of a fixed-size population”, SIAM J. Optim., 18:3 (2007), 980–1003 | DOI | MR | Zbl

[7] Grass D., Caulkins J.P., Feichtinger G., Tragler G., Behrens D.A., Optimal control of nonlinear processes. With applications in drugs, corruption, and terror, Springer, Berlin, 2008 | MR

[8] Grossman G.M., Helpman E., Innovation and growth in the global economy, MIT Press, Cambridge, MA, 1993

[9] Hartman P., Ordinary differential equations, J. Wiley and Sons, New York, 1964 | MR | Zbl

[10] Krasovskii A.A., Tarasev A.M., “Dinamicheskaya optimizatsiya investitsii v modelyakh ekonomicheskogo rosta”, Avtomatika i telemekhanika, 2007, no. 10, 38–52 | MR | Zbl

[11] Krasovskii A.A., Tarasev A.M., “Svoistva gamiltonovykh sistem v printsipe maksimuma Pontryagina dlya zadach ekonomicheskogo rosta”, Tr. MIAN, 262, 2008, 127–145 | MR | Zbl

[12] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988 | MR | Zbl

[13] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[14] Rockafellar R.T., “Hamilton–Jacobi theory and parametric analysis in fully convex problems of optimal control”, J. Global Optim., 28 (2004), 419–431 | DOI | MR | Zbl

[15] Sanderson W., The SEDIM model: Version 0.1, IIASA Interim Rep. IR-04-041. Laxenburg (Austria), 2004

[16] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical systems theory and economics, V. 1, Springer, Berlin, 1969, 241–292 | DOI | MR

[17] Solow R.M., Growth theory: An exposition, Oxford Univ. Press, New York, 1970

[18] Tarasev A.M., Usova A.A., “Postroenie regulyatora dlya gamiltonovoi sistemy dvukhsektornoi modeli ekonomicheskogo rosta”, Tr. MIAN, 271, 2010, 278–298 | MR

[19] Vatanabe Ch., Reshmin S.A., Tarasev A.M., “Dinamicheskaya model protsessa investitsii v nauchno-tekhnicheskie razrabotki”, PMM, 65:3 (2001), 408–425 | MR