Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_277_a16, author = {N. N. Subbotina and L. G. Shagalova}, title = {Construction of a~generalized solution to an equation that preserves the {Bellman} type in a~given domain of the state space}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {243--256}, publisher = {mathdoc}, volume = {277}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a16/} }
TY - JOUR AU - N. N. Subbotina AU - L. G. Shagalova TI - Construction of a~generalized solution to an equation that preserves the Bellman type in a~given domain of the state space JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 243 EP - 256 VL - 277 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_277_a16/ LA - ru ID - TM_2012_277_a16 ER -
%0 Journal Article %A N. N. Subbotina %A L. G. Shagalova %T Construction of a~generalized solution to an equation that preserves the Bellman type in a~given domain of the state space %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 243-256 %V 277 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2012_277_a16/ %G ru %F TM_2012_277_a16
N. N. Subbotina; L. G. Shagalova. Construction of a~generalized solution to an equation that preserves the Bellman type in a~given domain of the state space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 243-256. http://geodesic.mathdoc.fr/item/TM_2012_277_a16/