Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_277_a16, author = {N. N. Subbotina and L. G. Shagalova}, title = {Construction of a~generalized solution to an equation that preserves the {Bellman} type in a~given domain of the state space}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {243--256}, publisher = {mathdoc}, volume = {277}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a16/} }
TY - JOUR AU - N. N. Subbotina AU - L. G. Shagalova TI - Construction of a~generalized solution to an equation that preserves the Bellman type in a~given domain of the state space JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 243 EP - 256 VL - 277 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_277_a16/ LA - ru ID - TM_2012_277_a16 ER -
%0 Journal Article %A N. N. Subbotina %A L. G. Shagalova %T Construction of a~generalized solution to an equation that preserves the Bellman type in a~given domain of the state space %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 243-256 %V 277 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2012_277_a16/ %G ru %F TM_2012_277_a16
N. N. Subbotina; L. G. Shagalova. Construction of a~generalized solution to an equation that preserves the Bellman type in a~given domain of the state space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 243-256. http://geodesic.mathdoc.fr/item/TM_2012_277_a16/
[1] Bellman R., Dinamicheskoe programmirovanie, Izd-vo inostr. lit., M., 1960 | MR
[2] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR
[3] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl
[4] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi: Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR
[5] Kruzhkov S.N., “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi. I”, Mat. sb., 70:3 (1966), 394–415 | Zbl
[6] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR
[7] Melikyan A.A., “Granichnye singulyarnye kharakteristiki uravneniya Gamiltona–Yakobi”, PMM, 74:2 (2010), 202–215 | MR | Zbl
[8] Milyutin A.A., Dmitruk A.V., Osmolovskii N.P., Printsip maksimuma v optimalnom upravlenii, Izd-vo Tsentra prikl. issled. mekh.-mat. f-ta MGU, M., 2004
[9] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961
[10] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[11] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991 | MR | Zbl
[12] Subbotina N.N., Metod kharakteristik dlya uravnenii Gamiltona–Yakobi i ego prilozheniya v dinamicheskoi optimizatsii, Sovr. matematika i ee pril., 20, In-t kibernetiki AN Gruzii, Tbilisi, 2004
[13] Subbotina N.N., Shagalova L.G., “O reshenii zadachi Koshi dlya uravneniya Gamiltona–Yakobi s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2011), 191–208 | MR
[14] Bardi M., Capuzzo-Dolcetta I., Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Birkhäuser, Boston, 1997 | MR | Zbl
[15] Capuzzo-Dolcetta I., Lions P.-L., “Hamilton–Jacobi equations with state constraints”, Trans. Am. Math. Soc., 318:2 (1990), 643–683 | DOI | MR | Zbl
[16] Crandall M.G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Am. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl
[17] Crandall M.G., Newcomb R., “Viscosity solutions of Hamilton–Jacobi equations at the boundary”, Proc. Am. Math. Soc., 94:2 (1985), 283–290 | DOI | MR | Zbl
[18] Saakian D.B., Rozanova O., Akmetzhanov A., “Dynamics of the Eigen and the Crow–Kimura models for molecular evolution”, Phys. Rev. E., 78:4 (2008), 041908 | DOI | MR
[19] Subbotin A.I., Generalized solutions of first-order PDEs: The dynamical optimization perspective, Birkhäuser, Boston, 1995 | MR