Construction of a~generalized solution to an equation that preserves the Bellman type in a~given domain of the state space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 243-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Cauchy problem is considered for a Hamilton–Jacobi equation that preserves the Bellman type in a spatially bounded strip. Sufficient conditions are obtained under which there exists a continuous generalized (minimax/viscosity) solution to this problem with a given structure in the strip. A construction of this solution is presented.
@article{TM_2012_277_a16,
     author = {N. N. Subbotina and L. G. Shagalova},
     title = {Construction of a~generalized solution to an equation that preserves the {Bellman} type in a~given domain of the state space},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {243--256},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a16/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - L. G. Shagalova
TI  - Construction of a~generalized solution to an equation that preserves the Bellman type in a~given domain of the state space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 243
EP  - 256
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_277_a16/
LA  - ru
ID  - TM_2012_277_a16
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A L. G. Shagalova
%T Construction of a~generalized solution to an equation that preserves the Bellman type in a~given domain of the state space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 243-256
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_277_a16/
%G ru
%F TM_2012_277_a16
N. N. Subbotina; L. G. Shagalova. Construction of a~generalized solution to an equation that preserves the Bellman type in a~given domain of the state space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 243-256. http://geodesic.mathdoc.fr/item/TM_2012_277_a16/

[1] Bellman R., Dinamicheskoe programmirovanie, Izd-vo inostr. lit., M., 1960 | MR

[2] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[3] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[4] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi: Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR

[5] Kruzhkov S.N., “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi. I”, Mat. sb., 70:3 (1966), 394–415 | Zbl

[6] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[7] Melikyan A.A., “Granichnye singulyarnye kharakteristiki uravneniya Gamiltona–Yakobi”, PMM, 74:2 (2010), 202–215 | MR | Zbl

[8] Milyutin A.A., Dmitruk A.V., Osmolovskii N.P., Printsip maksimuma v optimalnom upravlenii, Izd-vo Tsentra prikl. issled. mekh.-mat. f-ta MGU, M., 2004

[9] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[10] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[11] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991 | MR | Zbl

[12] Subbotina N.N., Metod kharakteristik dlya uravnenii Gamiltona–Yakobi i ego prilozheniya v dinamicheskoi optimizatsii, Sovr. matematika i ee pril., 20, In-t kibernetiki AN Gruzii, Tbilisi, 2004

[13] Subbotina N.N., Shagalova L.G., “O reshenii zadachi Koshi dlya uravneniya Gamiltona–Yakobi s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2011), 191–208 | MR

[14] Bardi M., Capuzzo-Dolcetta I., Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Birkhäuser, Boston, 1997 | MR | Zbl

[15] Capuzzo-Dolcetta I., Lions P.-L., “Hamilton–Jacobi equations with state constraints”, Trans. Am. Math. Soc., 318:2 (1990), 643–683 | DOI | MR | Zbl

[16] Crandall M.G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Am. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[17] Crandall M.G., Newcomb R., “Viscosity solutions of Hamilton–Jacobi equations at the boundary”, Proc. Am. Math. Soc., 94:2 (1985), 283–290 | DOI | MR | Zbl

[18] Saakian D.B., Rozanova O., Akmetzhanov A., “Dynamics of the Eigen and the Crow–Kimura models for molecular evolution”, Phys. Rev. E., 78:4 (2008), 041908 | DOI | MR

[19] Subbotin A.I., Generalized solutions of first-order PDEs: The dynamical optimization perspective, Birkhäuser, Boston, 1995 | MR