Singularities of the affine chord envelope for two surfaces in four-space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 230-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study local singularities of the envelope of the set of straight lines (chords) joining those points of two surfaces embedded in $\mathbb R^4$ which are not in general position to each other.
@article{TM_2012_277_a15,
     author = {Graham M. Reeve and Vladimir M. Zakalyukin},
     title = {Singularities of the affine chord envelope for two surfaces in four-space},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {230--242},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a15/}
}
TY  - JOUR
AU  - Graham M. Reeve
AU  - Vladimir M. Zakalyukin
TI  - Singularities of the affine chord envelope for two surfaces in four-space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 230
EP  - 242
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_277_a15/
LA  - en
ID  - TM_2012_277_a15
ER  - 
%0 Journal Article
%A Graham M. Reeve
%A Vladimir M. Zakalyukin
%T Singularities of the affine chord envelope for two surfaces in four-space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 230-242
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_277_a15/
%G en
%F TM_2012_277_a15
Graham M. Reeve; Vladimir M. Zakalyukin. Singularities of the affine chord envelope for two surfaces in four-space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 230-242. http://geodesic.mathdoc.fr/item/TM_2012_277_a15/

[1] Arnol'd V.I., “Critical points of functions on a manifold with boundary, the simple Lie groups $B_k$, $C_k$, and $F_4$ and singularities of evolutes”, Russ. Math. Surv., 33:5 (1978), 99–116 | DOI | MR | Zbl | Zbl

[2] Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differentiable maps, V. 1., Birkhäuser, Boston, 1985 | MR | MR | Zbl

[3] Banchoff T.F., “Double tangency theorems for pairs of submanifolds”, Geometry symposium (Utrecht 1980), Lect. Notes Math., 894, Springer, Berlin, 1981, 26–48 | DOI | MR

[4] Berry M.V., “Semi-classical mechanics in phase space: A study of Wigner's function”, Philos. Trans. R. Soc. Lond. A, 287 (1977), 237–271 | DOI | MR | Zbl

[5] Domitrz W., de M. Rios P., Singularities of equidistants and global centre symmetry sets of Lagrangian submanifolds, E-print, 2010, arXiv: 1007.1939v3 [math.SG] | MR

[6] Dreibelbis D., “Bitangencies on surfaces in four dimensions”, Q. J. Math., 52 (2001), 137–160 | DOI | MR | Zbl

[7] Giblin P.J., Holtom P.A., “The centre symmetry set”, Geometry and topology of caustics—Caustics '98, Banach Center Publ., 50, Ed. by S. Janeczko, V.M. Zakalyukin, Pol. Acad. Sci., Warsaw, 1999, 91–105 | MR | Zbl

[8] Giblin P.J., Janeczko S., “Geometry of curves and surfaces through the contact map”, Topology Appl., 159 (2012), 466–475 | DOI | MR | Zbl

[9] Proc. Steklov Inst. Math., 267 (2009), 59–75 | DOI | MR | Zbl

[10] Giblin P.J., Zakalyukin V.M., “Singularities of centre symmetry sets”, Proc. London Math. Soc. Ser. 3, 90 (2005), 132–166 | DOI | MR | Zbl

[11] Giblin P.J., Zakalyukin V.M., “Recognition of centre symmetry set singularities”, Geom. Dedicata., 130 (2007), 43–58 | DOI | MR | Zbl

[12] Giusti M., “Classification des singularités isolées d'intersections complètes simples”, C. r. Acad. sci. Paris A, 284 (1977), 167–170 | MR | Zbl

[13] Goryunov V.V., “Singularities of projections of full intersections”, J. Sov. Math., 27 (1984), 2785–2811 | DOI | MR | Zbl

[14] Janeczko S., “Bifurcations of the center of symmetry”, Geom. Dedicata, 60 (1996), 9–16 | DOI | MR | Zbl

[15] Mather J., “Differentiable invariants”, Topology, 16 (1977), 145–155 | DOI | MR | Zbl

[16] Reeve G.M., Zakalyukin V.M., “Singularities of the Minkowski set and affine equidistants for a curve and a surface”, Topology Appl., 159 (2012), 555–561 | DOI | MR | Zbl

[17] Warder J.P., Symmetries of curves and surfaces, PhD Thesis, Univ. Liverpool, 2009 http://www.liv.ac.uk/~pjgiblin/papers/pw-thesis.pdf

[18] Zakalyukin V.M., “Reconstructions of fronts and caustics depending on a parameter and versality of mappings”, J. Sov. Math., 27 (1984), 2713–2735 | DOI | MR | Zbl