Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_277_a15, author = {Graham M. Reeve and Vladimir M. Zakalyukin}, title = {Singularities of the affine chord envelope for two surfaces in four-space}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {230--242}, publisher = {mathdoc}, volume = {277}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a15/} }
TY - JOUR AU - Graham M. Reeve AU - Vladimir M. Zakalyukin TI - Singularities of the affine chord envelope for two surfaces in four-space JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 230 EP - 242 VL - 277 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_277_a15/ LA - en ID - TM_2012_277_a15 ER -
%0 Journal Article %A Graham M. Reeve %A Vladimir M. Zakalyukin %T Singularities of the affine chord envelope for two surfaces in four-space %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 230-242 %V 277 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2012_277_a15/ %G en %F TM_2012_277_a15
Graham M. Reeve; Vladimir M. Zakalyukin. Singularities of the affine chord envelope for two surfaces in four-space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 230-242. http://geodesic.mathdoc.fr/item/TM_2012_277_a15/
[1] Arnol'd V.I., “Critical points of functions on a manifold with boundary, the simple Lie groups $B_k$, $C_k$, and $F_4$ and singularities of evolutes”, Russ. Math. Surv., 33:5 (1978), 99–116 | DOI | MR | Zbl | Zbl
[2] Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differentiable maps, V. 1., Birkhäuser, Boston, 1985 | MR | MR | Zbl
[3] Banchoff T.F., “Double tangency theorems for pairs of submanifolds”, Geometry symposium (Utrecht 1980), Lect. Notes Math., 894, Springer, Berlin, 1981, 26–48 | DOI | MR
[4] Berry M.V., “Semi-classical mechanics in phase space: A study of Wigner's function”, Philos. Trans. R. Soc. Lond. A, 287 (1977), 237–271 | DOI | MR | Zbl
[5] Domitrz W., de M. Rios P., Singularities of equidistants and global centre symmetry sets of Lagrangian submanifolds, E-print, 2010, arXiv: 1007.1939v3 [math.SG] | MR
[6] Dreibelbis D., “Bitangencies on surfaces in four dimensions”, Q. J. Math., 52 (2001), 137–160 | DOI | MR | Zbl
[7] Giblin P.J., Holtom P.A., “The centre symmetry set”, Geometry and topology of caustics—Caustics '98, Banach Center Publ., 50, Ed. by S. Janeczko, V.M. Zakalyukin, Pol. Acad. Sci., Warsaw, 1999, 91–105 | MR | Zbl
[8] Giblin P.J., Janeczko S., “Geometry of curves and surfaces through the contact map”, Topology Appl., 159 (2012), 466–475 | DOI | MR | Zbl
[9] Proc. Steklov Inst. Math., 267 (2009), 59–75 | DOI | MR | Zbl
[10] Giblin P.J., Zakalyukin V.M., “Singularities of centre symmetry sets”, Proc. London Math. Soc. Ser. 3, 90 (2005), 132–166 | DOI | MR | Zbl
[11] Giblin P.J., Zakalyukin V.M., “Recognition of centre symmetry set singularities”, Geom. Dedicata., 130 (2007), 43–58 | DOI | MR | Zbl
[12] Giusti M., “Classification des singularités isolées d'intersections complètes simples”, C. r. Acad. sci. Paris A, 284 (1977), 167–170 | MR | Zbl
[13] Goryunov V.V., “Singularities of projections of full intersections”, J. Sov. Math., 27 (1984), 2785–2811 | DOI | MR | Zbl
[14] Janeczko S., “Bifurcations of the center of symmetry”, Geom. Dedicata, 60 (1996), 9–16 | DOI | MR | Zbl
[15] Mather J., “Differentiable invariants”, Topology, 16 (1977), 145–155 | DOI | MR | Zbl
[16] Reeve G.M., Zakalyukin V.M., “Singularities of the Minkowski set and affine equidistants for a curve and a surface”, Topology Appl., 159 (2012), 555–561 | DOI | MR | Zbl
[17] Warder J.P., Symmetries of curves and surfaces, PhD Thesis, Univ. Liverpool, 2009 http://www.liv.ac.uk/~pjgiblin/papers/pw-thesis.pdf
[18] Zakalyukin V.M., “Reconstructions of fronts and caustics depending on a parameter and versality of mappings”, J. Sov. Math., 27 (1984), 2713–2735 | DOI | MR | Zbl