Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_277_a14, author = {M. M. Potapov and A. A. Dryazhenkov}, title = {Threshold optimization in observability inequality for the wave equation with homogeneous {Robin-type} boundary condition}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {215--229}, publisher = {mathdoc}, volume = {277}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a14/} }
TY - JOUR AU - M. M. Potapov AU - A. A. Dryazhenkov TI - Threshold optimization in observability inequality for the wave equation with homogeneous Robin-type boundary condition JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 215 EP - 229 VL - 277 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_277_a14/ LA - ru ID - TM_2012_277_a14 ER -
%0 Journal Article %A M. M. Potapov %A A. A. Dryazhenkov %T Threshold optimization in observability inequality for the wave equation with homogeneous Robin-type boundary condition %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 215-229 %V 277 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2012_277_a14/ %G ru %F TM_2012_277_a14
M. M. Potapov; A. A. Dryazhenkov. Threshold optimization in observability inequality for the wave equation with homogeneous Robin-type boundary condition. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 215-229. http://geodesic.mathdoc.fr/item/TM_2012_277_a14/
[1] Nikitin A.A., “Optimalnoe granichnoe upravlenie kolebaniyami struny, proizvodimoe siloi pri uprugom zakreplenii”, Dif. uravneniya, 47:12 (2011), 1773–1782 | MR | Zbl
[2] Potapov M.M., “Nablyudaemost neregulyarnykh reshenii tretei kraevoi zadachi dlya volnovogo uravneniya s peremennymi koeffitsientami”, DAN, 414:6 (2007), 738–742 | MR | Zbl
[3] Potapov M.M., “Raznostnaya approksimatsiya zadach dirikhle-nablyudeniya slabykh reshenii volnovogo uravneniya s kraevymi usloviyami III roda”, ZhVMiMF, 47:8 (2007), 1323–1339 | MR
[4] Vasilev F.P., Kurzhanskii M.A., Potapov M.M., Razgulin A.V., Priblizhennoe reshenie dvoistvennykh zadach upravleniya i nablyudeniya, Maks Press, M., 2010
[5] Potapov M.M., “Ustoichivyi metod resheniya lineinykh uravnenii s neravnomerno vozmuschennym operatorom”, DAN, 365:5 (1999), 596–598 | MR | Zbl
[6] Komornik V., Exact controllability and stabilization: The multiplier method, Wiley, Chichester; Masson, Paris, 1994 | MR | Zbl
[7] Lasiecka I., Triggiani R., Control theory for partial differential equations: Continuous and approximation theories. II: Abstract hyperbolic-like systems over a finite time horizon, Encycl. Math. Appl., 75, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[8] Zuazua E., “Propagation, observation, and control of waves approximated by finite difference methods”, SIAM Rev., 47:2 (2005), 197–243 | DOI | MR | Zbl
[9] Zuazua E., “Controllability and observability of partial differential equations: Some results and open problems”, Handbook of differential equations: Evolutionary equations, V. 3, Ch. 7, Ed. by C.M. Dafermos, E. Feireisl, Elsevier, Amsterdam, 2007, 527–621 | DOI | MR | Zbl
[10] Ho L.F., “Exact controllability of the one-dimensional wave equation with locally distributed control”, SIAM J. Control Optim., 28:3 (1990), 733–748 | DOI | MR | Zbl
[11] Ilin V.A., “Granichnoe upravlenie protsessom kolebanii na dvukh kontsakh v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Dif. uravneniya, 36:11 (2000), 1513–1528 | MR | Zbl
[12] V.A. Ilin, “Granichnoe upravlenie protsessom kolebanii na odnom kontse pri zakreplennom vtorom kontse v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Dif. uravneniya, 36:12 (2000), 1670–1686 | MR | Zbl
[13] Lasiecka I., Lions J.-L., Triggiani R., “Nonhomogeneous boundary value problems for second order hyperbolic operators”, J. Math. Pures Appl., 65 (1986), 149–192 | MR | Zbl
[14] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977
[15] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979 | MR