Threshold optimization in observability inequality for the wave equation with homogeneous Robin-type boundary condition
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 215-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the wave equation with variable coefficients, problems with one-side boundary controls of three basic types and a boundary condition of the third kind at the uncontrolled end are considered. For dual problems with one-side boundary observations in the classes of strong generalized solutions, new constructive observability inequalities are obtained that are superior to the earlier known ones in two respects. First, inequalities with an optimal value of the controllability-observability threshold are derived, and second, the value of the final evaluation constant is bounded away from zero on time intervals whose length is close to the critical length. This opens up a possibility of constructing stable approximate solutions to the indicated classes of dual control and observation problems on time intervals not only of an arbitrary supercritical but also of precisely critical length.
@article{TM_2012_277_a14,
     author = {M. M. Potapov and A. A. Dryazhenkov},
     title = {Threshold optimization in observability inequality for the wave equation with homogeneous {Robin-type} boundary condition},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {215--229},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a14/}
}
TY  - JOUR
AU  - M. M. Potapov
AU  - A. A. Dryazhenkov
TI  - Threshold optimization in observability inequality for the wave equation with homogeneous Robin-type boundary condition
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 215
EP  - 229
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_277_a14/
LA  - ru
ID  - TM_2012_277_a14
ER  - 
%0 Journal Article
%A M. M. Potapov
%A A. A. Dryazhenkov
%T Threshold optimization in observability inequality for the wave equation with homogeneous Robin-type boundary condition
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 215-229
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_277_a14/
%G ru
%F TM_2012_277_a14
M. M. Potapov; A. A. Dryazhenkov. Threshold optimization in observability inequality for the wave equation with homogeneous Robin-type boundary condition. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 215-229. http://geodesic.mathdoc.fr/item/TM_2012_277_a14/

[1] Nikitin A.A., “Optimalnoe granichnoe upravlenie kolebaniyami struny, proizvodimoe siloi pri uprugom zakreplenii”, Dif. uravneniya, 47:12 (2011), 1773–1782 | MR | Zbl

[2] Potapov M.M., “Nablyudaemost neregulyarnykh reshenii tretei kraevoi zadachi dlya volnovogo uravneniya s peremennymi koeffitsientami”, DAN, 414:6 (2007), 738–742 | MR | Zbl

[3] Potapov M.M., “Raznostnaya approksimatsiya zadach dirikhle-nablyudeniya slabykh reshenii volnovogo uravneniya s kraevymi usloviyami III roda”, ZhVMiMF, 47:8 (2007), 1323–1339 | MR

[4] Vasilev F.P., Kurzhanskii M.A., Potapov M.M., Razgulin A.V., Priblizhennoe reshenie dvoistvennykh zadach upravleniya i nablyudeniya, Maks Press, M., 2010

[5] Potapov M.M., “Ustoichivyi metod resheniya lineinykh uravnenii s neravnomerno vozmuschennym operatorom”, DAN, 365:5 (1999), 596–598 | MR | Zbl

[6] Komornik V., Exact controllability and stabilization: The multiplier method, Wiley, Chichester; Masson, Paris, 1994 | MR | Zbl

[7] Lasiecka I., Triggiani R., Control theory for partial differential equations: Continuous and approximation theories. II: Abstract hyperbolic-like systems over a finite time horizon, Encycl. Math. Appl., 75, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[8] Zuazua E., “Propagation, observation, and control of waves approximated by finite difference methods”, SIAM Rev., 47:2 (2005), 197–243 | DOI | MR | Zbl

[9] Zuazua E., “Controllability and observability of partial differential equations: Some results and open problems”, Handbook of differential equations: Evolutionary equations, V. 3, Ch. 7, Ed. by C.M. Dafermos, E. Feireisl, Elsevier, Amsterdam, 2007, 527–621 | DOI | MR | Zbl

[10] Ho L.F., “Exact controllability of the one-dimensional wave equation with locally distributed control”, SIAM J. Control Optim., 28:3 (1990), 733–748 | DOI | MR | Zbl

[11] Ilin V.A., “Granichnoe upravlenie protsessom kolebanii na dvukh kontsakh v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Dif. uravneniya, 36:11 (2000), 1513–1528 | MR | Zbl

[12] V.A. Ilin, “Granichnoe upravlenie protsessom kolebanii na odnom kontse pri zakreplennom vtorom kontse v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Dif. uravneniya, 36:12 (2000), 1670–1686 | MR | Zbl

[13] Lasiecka I., Lions J.-L., Triggiani R., “Nonhomogeneous boundary value problems for second order hyperbolic operators”, J. Math. Pures Appl., 65 (1986), 149–192 | MR | Zbl

[14] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977

[15] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979 | MR