Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 199-214
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the adiabatic limit in hyperbolic Ginzburg–Landau equations which are the Euler–Lagrange equations for the Abelian Higgs model. By passing to the adiabatic limit in these equations, we establish a correspondence between the solutions of the Ginzburg–Landau equations and adiabatic trajectories in the moduli space of static solutions, called vortices. Manton proposed a heuristic adiabatic principle stating that every solution of the Ginzburg–Landau equations with sufficiently small kinetic energy can be obtained as a perturbation of some adiabatic trajectory. A rigorous proof of this result has been found recently by the first author.
@article{TM_2012_277_a13,
author = {R. V. Palvelev and A. G. Sergeev},
title = {Justification of the adiabatic principle for hyperbolic {Ginzburg{\textendash}Landau} equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {199--214},
year = {2012},
volume = {277},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a13/}
}
TY - JOUR AU - R. V. Palvelev AU - A. G. Sergeev TI - Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 199 EP - 214 VL - 277 UR - http://geodesic.mathdoc.fr/item/TM_2012_277_a13/ LA - ru ID - TM_2012_277_a13 ER -
R. V. Palvelev; A. G. Sergeev. Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 199-214. http://geodesic.mathdoc.fr/item/TM_2012_277_a13/
[1] Jaffe A., Taubes C., Vortices and monopoles: Structure of static gauge theories, Birkhäuser, Boston, 1980 | MR | Zbl
[2] Manton N.S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR | Zbl
[3] Palvelev R.V., “Obosnovanie adiabaticheskogo printsipa v abelevoi modeli Khiggsa”, Tr. Mosk. mat. o-va, 72, no. 2, 2011, 281–314
[4] Stuart D., “Dynamics of Abelian Higgs vortices in the near Bogomolny regime”, Commun. Math. Phys., 159 (1994), 51–91 | DOI | MR | Zbl