Justification of the adiabatic principle for hyperbolic Ginzburg--Landau equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 199-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the adiabatic limit in hyperbolic Ginzburg–Landau equations which are the Euler–Lagrange equations for the Abelian Higgs model. By passing to the adiabatic limit in these equations, we establish a correspondence between the solutions of the Ginzburg–Landau equations and adiabatic trajectories in the moduli space of static solutions, called vortices. Manton proposed a heuristic adiabatic principle stating that every solution of the Ginzburg–Landau equations with sufficiently small kinetic energy can be obtained as a perturbation of some adiabatic trajectory. A rigorous proof of this result has been found recently by the first author.
@article{TM_2012_277_a13,
     author = {R. V. Palvelev and A. G. Sergeev},
     title = {Justification of the adiabatic principle for hyperbolic {Ginzburg--Landau} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {199--214},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a13/}
}
TY  - JOUR
AU  - R. V. Palvelev
AU  - A. G. Sergeev
TI  - Justification of the adiabatic principle for hyperbolic Ginzburg--Landau equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 199
EP  - 214
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_277_a13/
LA  - ru
ID  - TM_2012_277_a13
ER  - 
%0 Journal Article
%A R. V. Palvelev
%A A. G. Sergeev
%T Justification of the adiabatic principle for hyperbolic Ginzburg--Landau equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 199-214
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_277_a13/
%G ru
%F TM_2012_277_a13
R. V. Palvelev; A. G. Sergeev. Justification of the adiabatic principle for hyperbolic Ginzburg--Landau equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 199-214. http://geodesic.mathdoc.fr/item/TM_2012_277_a13/

[1] Jaffe A., Taubes C., Vortices and monopoles: Structure of static gauge theories, Birkhäuser, Boston, 1980 | MR | Zbl

[2] Manton N.S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR | Zbl

[3] Palvelev R.V., “Obosnovanie adiabaticheskogo printsipa v abelevoi modeli Khiggsa”, Tr. Mosk. mat. o-va, 72, no. 2, 2011, 281–314

[4] Stuart D., “Dynamics of Abelian Higgs vortices in the near Bogomolny regime”, Commun. Math. Phys., 159 (1994), 51–91 | DOI | MR | Zbl