Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 199-214
Voir la notice du chapitre de livre
We study the adiabatic limit in hyperbolic Ginzburg–Landau equations which are the Euler–Lagrange equations for the Abelian Higgs model. By passing to the adiabatic limit in these equations, we establish a correspondence between the solutions of the Ginzburg–Landau equations and adiabatic trajectories in the moduli space of static solutions, called vortices. Manton proposed a heuristic adiabatic principle stating that every solution of the Ginzburg–Landau equations with sufficiently small kinetic energy can be obtained as a perturbation of some adiabatic trajectory. A rigorous proof of this result has been found recently by the first author.
@article{TM_2012_277_a13,
author = {R. V. Palvelev and A. G. Sergeev},
title = {Justification of the adiabatic principle for hyperbolic {Ginzburg{\textendash}Landau} equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {199--214},
year = {2012},
volume = {277},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a13/}
}
TY - JOUR AU - R. V. Palvelev AU - A. G. Sergeev TI - Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 199 EP - 214 VL - 277 UR - http://geodesic.mathdoc.fr/item/TM_2012_277_a13/ LA - ru ID - TM_2012_277_a13 ER -
R. V. Palvelev; A. G. Sergeev. Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 199-214. http://geodesic.mathdoc.fr/item/TM_2012_277_a13/
[1] Jaffe A., Taubes C., Vortices and monopoles: Structure of static gauge theories, Birkhäuser, Boston, 1980 | MR | Zbl
[2] Manton N.S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR | Zbl
[3] Palvelev R.V., “Obosnovanie adiabaticheskogo printsipa v abelevoi modeli Khiggsa”, Tr. Mosk. mat. o-va, 72, no. 2, 2011, 281–314
[4] Stuart D., “Dynamics of Abelian Higgs vortices in the near Bogomolny regime”, Commun. Math. Phys., 159 (1994), 51–91 | DOI | MR | Zbl