Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 199-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the adiabatic limit in hyperbolic Ginzburg–Landau equations which are the Euler–Lagrange equations for the Abelian Higgs model. By passing to the adiabatic limit in these equations, we establish a correspondence between the solutions of the Ginzburg–Landau equations and adiabatic trajectories in the moduli space of static solutions, called vortices. Manton proposed a heuristic adiabatic principle stating that every solution of the Ginzburg–Landau equations with sufficiently small kinetic energy can be obtained as a perturbation of some adiabatic trajectory. A rigorous proof of this result has been found recently by the first author.
@article{TM_2012_277_a13,
     author = {R. V. Palvelev and A. G. Sergeev},
     title = {Justification of the adiabatic principle for hyperbolic {Ginzburg{\textendash}Landau} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {199--214},
     year = {2012},
     volume = {277},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a13/}
}
TY  - JOUR
AU  - R. V. Palvelev
AU  - A. G. Sergeev
TI  - Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 199
EP  - 214
VL  - 277
UR  - http://geodesic.mathdoc.fr/item/TM_2012_277_a13/
LA  - ru
ID  - TM_2012_277_a13
ER  - 
%0 Journal Article
%A R. V. Palvelev
%A A. G. Sergeev
%T Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 199-214
%V 277
%U http://geodesic.mathdoc.fr/item/TM_2012_277_a13/
%G ru
%F TM_2012_277_a13
R. V. Palvelev; A. G. Sergeev. Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 199-214. http://geodesic.mathdoc.fr/item/TM_2012_277_a13/

[1] Jaffe A., Taubes C., Vortices and monopoles: Structure of static gauge theories, Birkhäuser, Boston, 1980 | MR | Zbl

[2] Manton N.S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR | Zbl

[3] Palvelev R.V., “Obosnovanie adiabaticheskogo printsipa v abelevoi modeli Khiggsa”, Tr. Mosk. mat. o-va, 72, no. 2, 2011, 281–314

[4] Stuart D., “Dynamics of Abelian Higgs vortices in the near Bogomolny regime”, Commun. Math. Phys., 159 (1994), 51–91 | DOI | MR | Zbl