On the time-optimal problem for three- and four-dimensional control systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 192-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the time-optimal problem for three- and four-dimensional nonlinear control systems with one-dimensional control. We obtain sufficient conditions for a time-optimal control to be equivalent (in the Lebesgue sense) to a piecewise constant control that is also optimal, has a finite number of discontinuity points, and takes only extreme values. Such optimal controls are called bang-bang solutions and are of considerable interest in control theory and its applications.
@article{TM_2012_277_a12,
     author = {M. S. Nikol'skii},
     title = {On the time-optimal problem for three- and four-dimensional control systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {192--198},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a12/}
}
TY  - JOUR
AU  - M. S. Nikol'skii
TI  - On the time-optimal problem for three- and four-dimensional control systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 192
EP  - 198
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_277_a12/
LA  - ru
ID  - TM_2012_277_a12
ER  - 
%0 Journal Article
%A M. S. Nikol'skii
%T On the time-optimal problem for three- and four-dimensional control systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 192-198
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_277_a12/
%G ru
%F TM_2012_277_a12
M. S. Nikol'skii. On the time-optimal problem for three- and four-dimensional control systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 192-198. http://geodesic.mathdoc.fr/item/TM_2012_277_a12/

[1] Nikolskii M.S., “O zadache bystrodeistviya dlya dvumernykh upravlyaemykh sistem”, Dif. uravneniya, 46:11 (2010), 1631–1638 | MR | Zbl

[2] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969 | Zbl

[3] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972 | MR

[4] Filippov A.F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Matematika, mekhanika, astronomiya, fizika, khimiya, 1959, no. 2, 25–32 | Zbl

[5] Tonkov E.L., “Neostsillyatsiya i chislo pereklyuchenii v lineinoi nestatsionarnoi sisteme, optimalnoi po bystrodeistviyu”, Dif. uravneniya, 9:12 (1973), 2180–2185 | MR | Zbl

[6] Sansone Dzh., Obyknovennye differentsialnye uravneniya, T. 1., Izd-vo inostr. lit., M., 1953 | MR

[7] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 1976 | MR

[8] Bratus A.S., Novozhilov A.S., Platonov A.P., Dinamicheskie sistemy i modeli biologii, Fizmatlit, M., 2010