Identities involving Farey fractions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 131-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

The rational numbers $a/q$ in $[0,1]$ can be counted by increasing height $H(a/q)=\max(a,q)$, or ordered as real numbers. Franel's identity shows that the Riemann hypothesis is equivalent to a strong bound for a measure of the independence of these two orderings. We give a proof using Dedekind sums that allows weights $w(q)$. Taking $w(q)=\chi(q)$ we find an extension to Dirichlet L-functions.
@article{TM_2012_276_a9,
     author = {M. N. Huxley},
     title = {Identities involving {Farey} fractions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {131--145},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a9/}
}
TY  - JOUR
AU  - M. N. Huxley
TI  - Identities involving Farey fractions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 131
EP  - 145
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a9/
LA  - en
ID  - TM_2012_276_a9
ER  - 
%0 Journal Article
%A M. N. Huxley
%T Identities involving Farey fractions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 131-145
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a9/
%G en
%F TM_2012_276_a9
M. N. Huxley. Identities involving Farey fractions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 131-145. http://geodesic.mathdoc.fr/item/TM_2012_276_a9/

[1] Aigner M., Ziegler G.M., Proofs from the Book, Springer, Berlin, 1998 | Zbl

[2] Codecà P., Nair M., “Extremal values of $\Delta (x,N)=\sum _{n,\, (n,N)=1}1-x\varphi (N)$”, Can. Math. Bull., 41:3 (1998), 335–347 | DOI | MR | Zbl

[3] Franel J., “Les suites de Farey et le problème des nombres premiers”, Gött. Nachr., 1924, 198–201 | Zbl

[4] Greaves G.R.H., Hall R.R., Huxley M.N., Wilson J.C., “Multiple Franel integrals”, Mathematika., 40 (1993), 51–70 | DOI | MR | Zbl

[5] Hall R.R., Shiu P., “The index of a Farey sequence”, Mich. Math. J., 51 (2003), 209–223 | DOI | MR | Zbl

[6] Huxley M.N., “The distribution of Farey points. I”, Acta arith., 18 (1971), 281–287 | MR | Zbl

[7] Kanemitsu S., Yoshimoto M., “Farey series and the Riemann hypothesis”, Acta arith., 75 (1996), 351–374 | MR | Zbl

[8] Khinchin A.Ya., Three pearls of number theory, Graylock Press, Rochester, NY, 1952 | MR | Zbl

[9] Landau E., Vorlesungen über Zahlentheorie, S. Hirzel, Leipzig, 1927 | Zbl

[10] Rieger G.J., “Dedekindsche Summen in algebraischen Zahlkörpern”, Math. Ann., 141 (1960), 377–383 | DOI | MR | Zbl

[11] Vinogradov I.M., “Sur la distribution des résidus et des non-résidus des puissances”, Zhurn. fiz.-mat. o-va pri Permskom un-te., 1 (1918), 94–98