Identities involving Farey fractions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 131-145

Voir la notice de l'article provenant de la source Math-Net.Ru

The rational numbers $a/q$ in $[0,1]$ can be counted by increasing height $H(a/q)=\max(a,q)$, or ordered as real numbers. Franel's identity shows that the Riemann hypothesis is equivalent to a strong bound for a measure of the independence of these two orderings. We give a proof using Dedekind sums that allows weights $w(q)$. Taking $w(q)=\chi(q)$ we find an extension to Dirichlet L-functions.
@article{TM_2012_276_a9,
     author = {M. N. Huxley},
     title = {Identities involving {Farey} fractions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {131--145},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a9/}
}
TY  - JOUR
AU  - M. N. Huxley
TI  - Identities involving Farey fractions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 131
EP  - 145
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a9/
LA  - en
ID  - TM_2012_276_a9
ER  - 
%0 Journal Article
%A M. N. Huxley
%T Identities involving Farey fractions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 131-145
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a9/
%G en
%F TM_2012_276_a9
M. N. Huxley. Identities involving Farey fractions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 131-145. http://geodesic.mathdoc.fr/item/TM_2012_276_a9/