Asymptotics for the sum of powers of distances between power residues modulo a~prime
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 83-95

Voir la notice de l'article provenant de la source Math-Net.Ru

For fixed $q\in(0,4)$, prime $p\to\infty$, and $d\le\exp(c\sqrt{\ln p})$, where $c>0$ is a constant, we obtain the asymptotics for the sum of $q$th powers of distances between neighboring residues of degree $d$ modulo $p$.
@article{TM_2012_276_a6,
     author = {M. Z. Garaev and S. V. Konyagin and Yu. V. Malykhin},
     title = {Asymptotics for the sum of powers of distances between power residues modulo a~prime},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a6/}
}
TY  - JOUR
AU  - M. Z. Garaev
AU  - S. V. Konyagin
AU  - Yu. V. Malykhin
TI  - Asymptotics for the sum of powers of distances between power residues modulo a~prime
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 83
EP  - 95
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a6/
LA  - ru
ID  - TM_2012_276_a6
ER  - 
%0 Journal Article
%A M. Z. Garaev
%A S. V. Konyagin
%A Yu. V. Malykhin
%T Asymptotics for the sum of powers of distances between power residues modulo a~prime
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 83-95
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a6/
%G ru
%F TM_2012_276_a6
M. Z. Garaev; S. V. Konyagin; Yu. V. Malykhin. Asymptotics for the sum of powers of distances between power residues modulo a~prime. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 83-95. http://geodesic.mathdoc.fr/item/TM_2012_276_a6/