On the distribution of values of the derivative of the Riemann zeta function at its zeros.~I
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 57-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\zeta'(s)$ be the derivative of the Riemann zeta function $\zeta(s)$. A study on the value distribution of $\zeta'(s)$ at the non-trivial zeros $\rho$ of $\zeta(s)$ is presented. In particular, for a fixed positive number $X$, an asymptotic formula and a non-trivial upper bound for the sum $\sum_{0\operatorname{Im}\rho\leq T}\zeta'(\rho)X^\rho$ as $T\to\infty$ are given. We clarify the dependence on the arithmetic nature of $X$.
@article{TM_2012_276_a5,
     author = {Akio Fujii},
     title = {On the distribution of values of the derivative of the {Riemann} zeta function at its {zeros.~I}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {57--82},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a5/}
}
TY  - JOUR
AU  - Akio Fujii
TI  - On the distribution of values of the derivative of the Riemann zeta function at its zeros.~I
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 57
EP  - 82
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a5/
LA  - en
ID  - TM_2012_276_a5
ER  - 
%0 Journal Article
%A Akio Fujii
%T On the distribution of values of the derivative of the Riemann zeta function at its zeros.~I
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 57-82
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a5/
%G en
%F TM_2012_276_a5
Akio Fujii. On the distribution of values of the derivative of the Riemann zeta function at its zeros.~I. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 57-82. http://geodesic.mathdoc.fr/item/TM_2012_276_a5/

[1] Conrey B., “Zeros of derivatives of Riemann's $\xi $-function on the critical line”, J. Number Theory., 16 (1983), 49–74 | DOI | MR | Zbl

[2] Conrey J.B., “The fourth moment of derivatives of the Riemann zeta-function”, Q. J. Math. Oxford. Ser. 2., 39 (1988), 21–36 | DOI | MR | Zbl

[3] Conrey J.B., Ghosh A., Gonek S.M., “Simple zeros of zeta functions”, Colloque de Théorie Analytique des Nombres “Jean Coquet”, 1985, Publ. Math. Orsay, 88/02, Univ. Paris XI, Orsay, 1988, 77–83 | MR

[4] Fujii A., “On the uniformity of the distribution of the zeros of the Riemann zeta function. II”, Comment. Math. Univ. St. Pauli., 31 (1982), 99–113 | MR | Zbl

[5] Fujii A., “On a theorem of Landau”, Proc. Japan Acad. A., 65 (1989), 51–54 | DOI | MR | Zbl

[6] Fujii A., “On a theorem of Landau. II”, Proc. Japan Acad. A., 66 (1990), 291–296 | DOI | MR

[7] Fujii A., “Some observations concerning the distribution of the zeros of the zeta functions. II”, Comment. Math. Univ. St. Pauli., 40:2 (1991), 125–231 | MR | Zbl

[8] Fujii A., “On a conjecture of Shanks”, Proc. Japan Acad. A., 70 (1994), 109–114 | DOI | MR | Zbl

[9] Gonek S.M., “Mean values of the Riemann zeta function and its derivatives”, Invent. math., 75 (1984), 123–141 | DOI | MR | Zbl

[10] Gonek S.M., “A formula of Landau and mean values of $\zeta (s)$”, Topics in analytic number theory, Univ. Texas Press, Austin, TX, 1985, 92–97 | MR

[11] Hardy G.H., Littlewood J.E., “Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes”, Acta math., 41 (1918), 119–196 | DOI | MR

[12] Hiary G.A., Odlyzko A.M., Numerical study of the derivative of the Riemann zeta function at zeros, E-print, 2011, arXiv: 1105.4312 [math.NT] | MR

[13] Ivić A., The Riemann zeta-function: The theory of the Riemann zeta-function with applications, J. Wiley Sons, New York, 1985 | MR | Zbl

[14] Iwaniec H., Kowalski E., Analytic number theory, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[15] Karatsuba A.A., Voronin S.M., The Riemann zeta-function, De Gruyter Expo. Math., 5, W. de Gruyter, Berlin, 1992 | MR | Zbl

[16] Landau E., “Über die Nullstellen der Zetafunktion”, Math. Ann., 71 (1912), 548–564 | DOI | MR | Zbl

[17] Levinson N., “More than one third of zeros of Riemann's zeta function are on $\sigma =1/2$”, Adv. Math., 13 (1974), 383–436 | DOI | MR | Zbl

[18] Montgomery H.L., Vaughan R.C., Multiplicative number theory. I: Classical theory, Cambridge Univ. Press, Cambridge, 2007 | MR

[19] Prachar K., Primzahlverteilung, Springer, Berlin, 1957 | MR | Zbl

[20] Titchmarsh E.C., The theory of the Riemann zeta-function, 2nd ed., rev. by D.R. Heath-Brown, Clarendon Press, Oxford, 1986 | MR | Zbl

[21] Vaughan R.C., “On the distribution of $\alpha p$ modulo $1$”, Mathematika, 24:2 (1977), 135–141 | DOI | MR

[22] Vinogradov I.M., The method of trigonometrical sums in the theory of numbers, Intersci., New York, 1954 | Zbl

[23] Vinogradov I.M., Selected works, Springer, Berlin, 1985 | MR | Zbl