On the distribution of values of the derivative of the Riemann zeta function at its zeros. I
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 57-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\zeta'(s)$ be the derivative of the Riemann zeta function $\zeta(s)$. A study on the value distribution of $\zeta'(s)$ at the non-trivial zeros $\rho$ of $\zeta(s)$ is presented. In particular, for a fixed positive number $X$, an asymptotic formula and a non-trivial upper bound for the sum $\sum_{0\operatorname{Im}\rho\leq T}\zeta'(\rho)X^\rho$ as $T\to\infty$ are given. We clarify the dependence on the arithmetic nature of $X$.
@article{TM_2012_276_a5,
     author = {Akio Fujii},
     title = {On the distribution of values of the derivative of the {Riemann} zeta function at its {zeros.~I}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {57--82},
     year = {2012},
     volume = {276},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a5/}
}
TY  - JOUR
AU  - Akio Fujii
TI  - On the distribution of values of the derivative of the Riemann zeta function at its zeros. I
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 57
EP  - 82
VL  - 276
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a5/
LA  - en
ID  - TM_2012_276_a5
ER  - 
%0 Journal Article
%A Akio Fujii
%T On the distribution of values of the derivative of the Riemann zeta function at its zeros. I
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 57-82
%V 276
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a5/
%G en
%F TM_2012_276_a5
Akio Fujii. On the distribution of values of the derivative of the Riemann zeta function at its zeros. I. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 57-82. http://geodesic.mathdoc.fr/item/TM_2012_276_a5/

[1] Conrey B., “Zeros of derivatives of Riemann's $\xi $-function on the critical line”, J. Number Theory., 16 (1983), 49–74 | DOI | MR | Zbl

[2] Conrey J.B., “The fourth moment of derivatives of the Riemann zeta-function”, Q. J. Math. Oxford. Ser. 2., 39 (1988), 21–36 | DOI | MR | Zbl

[3] Conrey J.B., Ghosh A., Gonek S.M., “Simple zeros of zeta functions”, Colloque de Théorie Analytique des Nombres “Jean Coquet”, 1985, Publ. Math. Orsay, 88/02, Univ. Paris XI, Orsay, 1988, 77–83 | MR

[4] Fujii A., “On the uniformity of the distribution of the zeros of the Riemann zeta function. II”, Comment. Math. Univ. St. Pauli., 31 (1982), 99–113 | MR | Zbl

[5] Fujii A., “On a theorem of Landau”, Proc. Japan Acad. A., 65 (1989), 51–54 | DOI | MR | Zbl

[6] Fujii A., “On a theorem of Landau. II”, Proc. Japan Acad. A., 66 (1990), 291–296 | DOI | MR

[7] Fujii A., “Some observations concerning the distribution of the zeros of the zeta functions. II”, Comment. Math. Univ. St. Pauli., 40:2 (1991), 125–231 | MR | Zbl

[8] Fujii A., “On a conjecture of Shanks”, Proc. Japan Acad. A., 70 (1994), 109–114 | DOI | MR | Zbl

[9] Gonek S.M., “Mean values of the Riemann zeta function and its derivatives”, Invent. math., 75 (1984), 123–141 | DOI | MR | Zbl

[10] Gonek S.M., “A formula of Landau and mean values of $\zeta (s)$”, Topics in analytic number theory, Univ. Texas Press, Austin, TX, 1985, 92–97 | MR

[11] Hardy G.H., Littlewood J.E., “Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes”, Acta math., 41 (1918), 119–196 | DOI | MR

[12] Hiary G.A., Odlyzko A.M., Numerical study of the derivative of the Riemann zeta function at zeros, E-print, 2011, arXiv: 1105.4312 [math.NT] | MR

[13] Ivić A., The Riemann zeta-function: The theory of the Riemann zeta-function with applications, J. Wiley Sons, New York, 1985 | MR | Zbl

[14] Iwaniec H., Kowalski E., Analytic number theory, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[15] Karatsuba A.A., Voronin S.M., The Riemann zeta-function, De Gruyter Expo. Math., 5, W. de Gruyter, Berlin, 1992 | MR | Zbl

[16] Landau E., “Über die Nullstellen der Zetafunktion”, Math. Ann., 71 (1912), 548–564 | DOI | MR | Zbl

[17] Levinson N., “More than one third of zeros of Riemann's zeta function are on $\sigma =1/2$”, Adv. Math., 13 (1974), 383–436 | DOI | MR | Zbl

[18] Montgomery H.L., Vaughan R.C., Multiplicative number theory. I: Classical theory, Cambridge Univ. Press, Cambridge, 2007 | MR

[19] Prachar K., Primzahlverteilung, Springer, Berlin, 1957 | MR | Zbl

[20] Titchmarsh E.C., The theory of the Riemann zeta-function, 2nd ed., rev. by D.R. Heath-Brown, Clarendon Press, Oxford, 1986 | MR | Zbl

[21] Vaughan R.C., “On the distribution of $\alpha p$ modulo $1$”, Mathematika, 24:2 (1977), 135–141 | DOI | MR

[22] Vinogradov I.M., The method of trigonometrical sums in the theory of numbers, Intersci., New York, 1954 | Zbl

[23] Vinogradov I.M., Selected works, Springer, Berlin, 1985 | MR | Zbl