@article{TM_2012_276_a4,
author = {\'Etienne Fouvry and Florent Jouve},
title = {Fundamental solutions to {Pell} equation with prescribed size},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {46--56},
year = {2012},
volume = {276},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a4/}
}
Étienne Fouvry; Florent Jouve. Fundamental solutions to Pell equation with prescribed size. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 46-56. http://geodesic.mathdoc.fr/item/TM_2012_276_a4/
[1] Fouvry E., On the size of the fundamental solution of Pell equation, Preprint, Univ. Paris-Sud, 2010 | MR
[2] Fouvry E., Jouve F., A positive density of fundamental discriminants with large regulator, Preprint, Univ. Paris-Sud, 2011 | MR
[3] Fouvry E., Jouve F., Size of regulators and consecutive square-free numbers, Preprint, Univ. Paris-Sud, 2011 | MR
[4] Golubeva E.P., “Lengths of the periods of the continued fraction expansion of quadratic irrationalities and on the class numbers of real quadratic fields”, J. Sov. Math., 52:3 (1990), 3049–3056 | DOI | MR
[5] Hooley C., “On the Pellian equation and the class number of indefinite binary quadratic forms”, J. reine angew. Math., 353 (1984), 98–131 | MR | Zbl
[6] Lejeune Dirichlet G., “Sur une propriété des formes quadratiques à déterminant positif”, G. Lejeune Dirichlet's Werke, Bd. 2, Chelsea Publ. Co., Bronx, NY, 1969, 191–194
[7] Zagier D.B., Zetafunktionen und quadratische Körper: Eine Einführung in die höhere Zahlentheorie, Hochschultext, Springer, Berlin, 1981 | MR | Zbl