Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_276_a4, author = {\'Etienne Fouvry and Florent Jouve}, title = {Fundamental solutions to {Pell} equation with prescribed size}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {46--56}, publisher = {mathdoc}, volume = {276}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a4/} }
TY - JOUR AU - Étienne Fouvry AU - Florent Jouve TI - Fundamental solutions to Pell equation with prescribed size JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 46 EP - 56 VL - 276 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_276_a4/ LA - en ID - TM_2012_276_a4 ER -
Étienne Fouvry; Florent Jouve. Fundamental solutions to Pell equation with prescribed size. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 46-56. http://geodesic.mathdoc.fr/item/TM_2012_276_a4/
[1] Fouvry E., On the size of the fundamental solution of Pell equation, Preprint, Univ. Paris-Sud, 2010 | MR
[2] Fouvry E., Jouve F., A positive density of fundamental discriminants with large regulator, Preprint, Univ. Paris-Sud, 2011 | MR
[3] Fouvry E., Jouve F., Size of regulators and consecutive square-free numbers, Preprint, Univ. Paris-Sud, 2011 | MR
[4] Golubeva E.P., “Lengths of the periods of the continued fraction expansion of quadratic irrationalities and on the class numbers of real quadratic fields”, J. Sov. Math., 52:3 (1990), 3049–3056 | DOI | MR
[5] Hooley C., “On the Pellian equation and the class number of indefinite binary quadratic forms”, J. reine angew. Math., 353 (1984), 98–131 | MR | Zbl
[6] Lejeune Dirichlet G., “Sur une propriété des formes quadratiques à déterminant positif”, G. Lejeune Dirichlet's Werke, Bd. 2, Chelsea Publ. Co., Bronx, NY, 1969, 191–194
[7] Zagier D.B., Zetafunktionen und quadratische Körper: Eine Einführung in die höhere Zahlentheorie, Hochschultext, Springer, Berlin, 1981 | MR | Zbl