Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_276_a22, author = {D. I. Tolev}, title = {On the remainder term in the circle problem in an arithmetic progression}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {266--279}, publisher = {mathdoc}, volume = {276}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a22/} }
TY - JOUR AU - D. I. Tolev TI - On the remainder term in the circle problem in an arithmetic progression JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 266 EP - 279 VL - 276 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_276_a22/ LA - en ID - TM_2012_276_a22 ER -
D. I. Tolev. On the remainder term in the circle problem in an arithmetic progression. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 266-279. http://geodesic.mathdoc.fr/item/TM_2012_276_a22/
[1] Bombieri E., “On exponential sums in finite fields”, Amer. J. Math., 88 (1966), 71–105 | DOI | MR | Zbl
[2] Blomer V., “The average value of divisor sums in arithmetic progressions”, Quart. J. Math., 59 (2008), 275–286 | DOI | MR | Zbl
[3] Blomer V., Brüdern J., Dietmann R., “Sums of smooth squares”, Compos. math., 145 (2009), 1401–1441 | DOI | MR | Zbl
[4] Estermann T., “A new application of the Hardy–Littlewood–Kloosterman method”, Proc. London Math. Soc., 12 (1962), 425–444 | DOI | MR | Zbl
[5] Graham S.W., Kolesnik G., Van der Corput's method of exponential sums, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[6] Hooley C., Applications of sieve methods to the theory of numbers, Cambridge Univ. Press, Cambridge, 1976 | MR
[7] Hua L.K., Introduction to number theory, Springer, Berlin, 1982 | MR | Zbl
[8] Iwaniec H., Kowalski E., Analytic number theory, Colloq. Publ., 53, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[9] Smith R.A., “The circle problem in an arithmetic progression”, Can. Math. Bull., 11:2 (1968), 175–184 | DOI | MR | Zbl
[10] Ustinov A.V., “On the number of solutions of the congruence $xy\equiv l\pmod {q}$ under the graph of a twice continuously differentiable function”, St. Petersburg Math. J., 20 (2009), 813–836 | DOI | MR | Zbl
[11] Varbanets P.D., “Lattice points in a circle whose distances from the center are in an arithmetic progression”, Math. Notes, 8 (1970), 917–923 | DOI | Zbl