On the remainder term in the circle problem in an arithmetic progression
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 266-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we improve the estimate for the remainder term in the asymptotic formula concerning the circle problem in an arithmetic progression.
@article{TM_2012_276_a22,
     author = {D. I. Tolev},
     title = {On the remainder term in the circle problem in an arithmetic progression},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {266--279},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a22/}
}
TY  - JOUR
AU  - D. I. Tolev
TI  - On the remainder term in the circle problem in an arithmetic progression
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 266
EP  - 279
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a22/
LA  - en
ID  - TM_2012_276_a22
ER  - 
%0 Journal Article
%A D. I. Tolev
%T On the remainder term in the circle problem in an arithmetic progression
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 266-279
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a22/
%G en
%F TM_2012_276_a22
D. I. Tolev. On the remainder term in the circle problem in an arithmetic progression. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 266-279. http://geodesic.mathdoc.fr/item/TM_2012_276_a22/

[1] Bombieri E., “On exponential sums in finite fields”, Amer. J. Math., 88 (1966), 71–105 | DOI | MR | Zbl

[2] Blomer V., “The average value of divisor sums in arithmetic progressions”, Quart. J. Math., 59 (2008), 275–286 | DOI | MR | Zbl

[3] Blomer V., Brüdern J., Dietmann R., “Sums of smooth squares”, Compos. math., 145 (2009), 1401–1441 | DOI | MR | Zbl

[4] Estermann T., “A new application of the Hardy–Littlewood–Kloosterman method”, Proc. London Math. Soc., 12 (1962), 425–444 | DOI | MR | Zbl

[5] Graham S.W., Kolesnik G., Van der Corput's method of exponential sums, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[6] Hooley C., Applications of sieve methods to the theory of numbers, Cambridge Univ. Press, Cambridge, 1976 | MR

[7] Hua L.K., Introduction to number theory, Springer, Berlin, 1982 | MR | Zbl

[8] Iwaniec H., Kowalski E., Analytic number theory, Colloq. Publ., 53, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[9] Smith R.A., “The circle problem in an arithmetic progression”, Can. Math. Bull., 11:2 (1968), 175–184 | DOI | MR | Zbl

[10] Ustinov A.V., “On the number of solutions of the congruence $xy\equiv l\pmod {q}$ under the graph of a twice continuously differentiable function”, St. Petersburg Math. J., 20 (2009), 813–836 | DOI | MR | Zbl

[11] Varbanets P.D., “Lattice points in a circle whose distances from the center are in an arithmetic progression”, Math. Notes, 8 (1970), 917–923 | DOI | Zbl