On the remainder term in the circle problem in an arithmetic progression
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 266-279

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we improve the estimate for the remainder term in the asymptotic formula concerning the circle problem in an arithmetic progression.
@article{TM_2012_276_a22,
     author = {D. I. Tolev},
     title = {On the remainder term in the circle problem in an arithmetic progression},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {266--279},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a22/}
}
TY  - JOUR
AU  - D. I. Tolev
TI  - On the remainder term in the circle problem in an arithmetic progression
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 266
EP  - 279
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a22/
LA  - en
ID  - TM_2012_276_a22
ER  - 
%0 Journal Article
%A D. I. Tolev
%T On the remainder term in the circle problem in an arithmetic progression
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 266-279
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a22/
%G en
%F TM_2012_276_a22
D. I. Tolev. On the remainder term in the circle problem in an arithmetic progression. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 266-279. http://geodesic.mathdoc.fr/item/TM_2012_276_a22/