On the remainder term in the circle problem in an arithmetic progression
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 266-279
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we improve the estimate for the remainder term in the asymptotic formula concerning the circle problem in an arithmetic progression.
@article{TM_2012_276_a22,
author = {D. I. Tolev},
title = {On the remainder term in the circle problem in an arithmetic progression},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {266--279},
publisher = {mathdoc},
volume = {276},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a22/}
}
TY - JOUR AU - D. I. Tolev TI - On the remainder term in the circle problem in an arithmetic progression JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 266 EP - 279 VL - 276 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_276_a22/ LA - en ID - TM_2012_276_a22 ER -
D. I. Tolev. On the remainder term in the circle problem in an arithmetic progression. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 266-279. http://geodesic.mathdoc.fr/item/TM_2012_276_a22/