Equal values of trinomials revisited
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 255-261
Voir la notice de l'article provenant de la source Math-Net.Ru
A necessary and sufficient condition is given for an equation $ax^m+bx^n+c=dy^p+ey^q$ to have infinitely many rational solutions with a bounded denominator, under the assumption that $m>n>0$, $p>q>0$,
$ab\ne0\ne de$ and either $m>p>2$, or $m=p>2$ and $n\geq$. In a previous paper there was an additional assumption $(m,n)=(p,q)=1$.
@article{TM_2012_276_a20,
author = {A. Schinzel},
title = {Equal values of trinomials revisited},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {255--261},
publisher = {mathdoc},
volume = {276},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a20/}
}
A. Schinzel. Equal values of trinomials revisited. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 255-261. http://geodesic.mathdoc.fr/item/TM_2012_276_a20/