Equal values of trinomials revisited
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 255-261
Voir la notice du chapitre de livre
A necessary and sufficient condition is given for an equation $ax^m+bx^n+c=dy^p+ey^q$ to have infinitely many rational solutions with a bounded denominator, under the assumption that $m>n>0$, $p>q>0$, $ab\ne0\ne de$ and either $m>p>2$, or $m=p>2$ and $n\geq$. In a previous paper there was an additional assumption $(m,n)=(p,q)=1$.
@article{TM_2012_276_a20,
author = {A. Schinzel},
title = {Equal values of trinomials revisited},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {255--261},
year = {2012},
volume = {276},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a20/}
}
A. Schinzel. Equal values of trinomials revisited. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 255-261. http://geodesic.mathdoc.fr/item/TM_2012_276_a20/
[1] Bilu Yu.F., Tichy R.F., “The Diophantine equation $f(x)=g(y)$”, Acta arith., 95 (2000), 261–288 | MR | Zbl
[2] Fried M., Schinzel A., “Reducibility of quadrinomials”, Acta arith., 21 (1972), 153–171 ; Corrigendum and addendum, Acta arith., 99 (2001), 409–410 ; Schinzel A., Selecta, V. 1, Eur. Math. Soc. Publ. House, Zürich, 2007, 720–738 | MR | Zbl | DOI | MR
[3] Péter G., Pintér Á., Schinzel A., “On equal values of trinomials”, Monatsh. Math., 162 (2011), 313–320 | DOI | MR | Zbl