$q$-Orthogonal polynomials, Rogers--Ramanujan identities, and mock theta functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 27-38

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the role that $q$-orthogonal polynomials can play in the application of Bailey pairs. The use of specializations of $q$-orthogonal polynomials reveals new instances of mock theta functions.
@article{TM_2012_276_a2,
     author = {George E. Andrews},
     title = {$q${-Orthogonal} polynomials, {Rogers--Ramanujan} identities, and mock theta functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {27--38},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a2/}
}
TY  - JOUR
AU  - George E. Andrews
TI  - $q$-Orthogonal polynomials, Rogers--Ramanujan identities, and mock theta functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 27
EP  - 38
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a2/
LA  - en
ID  - TM_2012_276_a2
ER  - 
%0 Journal Article
%A George E. Andrews
%T $q$-Orthogonal polynomials, Rogers--Ramanujan identities, and mock theta functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 27-38
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a2/
%G en
%F TM_2012_276_a2
George E. Andrews. $q$-Orthogonal polynomials, Rogers--Ramanujan identities, and mock theta functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 27-38. http://geodesic.mathdoc.fr/item/TM_2012_276_a2/