$q$-Orthogonal polynomials, Rogers--Ramanujan identities, and mock theta functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 27-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the role that $q$-orthogonal polynomials can play in the application of Bailey pairs. The use of specializations of $q$-orthogonal polynomials reveals new instances of mock theta functions.
@article{TM_2012_276_a2,
     author = {George E. Andrews},
     title = {$q${-Orthogonal} polynomials, {Rogers--Ramanujan} identities, and mock theta functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {27--38},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a2/}
}
TY  - JOUR
AU  - George E. Andrews
TI  - $q$-Orthogonal polynomials, Rogers--Ramanujan identities, and mock theta functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 27
EP  - 38
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a2/
LA  - en
ID  - TM_2012_276_a2
ER  - 
%0 Journal Article
%A George E. Andrews
%T $q$-Orthogonal polynomials, Rogers--Ramanujan identities, and mock theta functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 27-38
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a2/
%G en
%F TM_2012_276_a2
George E. Andrews. $q$-Orthogonal polynomials, Rogers--Ramanujan identities, and mock theta functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 27-38. http://geodesic.mathdoc.fr/item/TM_2012_276_a2/

[1] Andrews G.E., The theory of partitions, Addison-Wesley, Reading, MA, 1976 ; Encycl. Math. Appl., 2, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl | Zbl

[2] Andrews G.E., “Multiple series Rogers–Ramanujan type identities”, Pac. J. Math., 114 (1984), 267–283 | DOI | MR | Zbl

[3] Andrews G.E., “The fifth and seventh order mock theta functions”, Trans. Amer. Math. Soc., 293 (1986), 113–134 | DOI | MR | Zbl

[4] Andrews G.E., $q$-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Reg. Conf. Ser. Math., 66, Amer. Math. Soc., Providence, RI, 1986 | MR

[5] Andrews G.E., “Parity in partition identities”, Ramanujan J., 23 (2010), 45–90 | DOI | MR | Zbl

[6] Andrews G.E., “Partitions with early conditions” (to appear)

[7] Andrews G.E., Askey R., “Enumeration of partitions: the role of Eulerian series and $q$-orthogonal polynomials”, Higher combinatorics, Proc. NATO Adv. Study Inst., Berlin, 1976, eds. Ed. by M. Aigner, D. Reidel, Boston, 1977, 3–26 | DOI | MR

[8] Andrews G.E., Askey R., Roy R., Special functions, Encycl. Math. Appl. 71, 71, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[9] Andrews G.E., Berndt B.C., Ramanujan's lost notebook, Pt. II., Springer, New York, 2009 | MR

[10] Andrews G.E., Dyson F.J., Hickerson D., “Partitions and indefinite quadratic forms”, Invent. math., 91 (1988), 391–407 | DOI | MR | Zbl

[11] Andrews G.E., Hickerson D., “Ramanujan's “lost” notebook. VII: The sixth order mock theta functions”, Adv. Math., 89 (1991), 60–105 | DOI | MR | Zbl

[12] Auluck F.C., “On some new types of partitions associated with generalized Ferrers graphs”, Proc. Cambridge Philos. Soc., 47 (1951), 679–686 | DOI | MR | Zbl

[13] Bailey W.N., “Some identities in combinatory analysis”, Proc. London Math. Soc. Ser. 2., 49 (1947), 421–435 | DOI | MR | Zbl

[14] Bailey W.N., “Identities of the Rogers–Ramanujan type”, Proc. London Math. Soc. Ser. 2., 50 (1948), 1–10 | DOI | MR | Zbl

[15] Bailey W.N., “On the simplification of some identities of the Rogers–Ramanujan type”, Proc. London Math. Soc. Ser. 3., 1 (1951), 217–221 | DOI | MR | Zbl

[16] Fine N.J., Basic hypergeometric series and applications, Math. Surv. Monogr., 27, Amer. Math. Soc., Providence, RI, 1988 | DOI | MR | Zbl

[17] Gasper G., Rahman M., Basic hypergeometric series, Encycl. Math. Appl. 35, 35, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[18] Slater L.J., “Further identities of the Rogers–Ramanujan type”, Proc. London Math. Soc. Ser. 2, 54 (1952), 147–167 | DOI | MR | Zbl

[19] Watson G.N., “A new proof of the Rogers–Ramanujan identities”, J. London Math. Soc., 4 (1929), 4–9 | DOI | MR | Zbl

[20] Watson G.N., “The final problem: An account of the mock theta functions”, J. London Math. Soc., 11 (1936), 55–80 | DOI | MR