On the multiplicity of solutions of a~system of algebraic equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 239-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain upper bounds for the multiplicity of an isolated solution of a system of equations $f_1=\dots=f_M=0$ in $M$ variables, where the set of polynomials $(f_1,\dots,f_M)$ is a tuple of general position in a subvariety of a given codimension which does not exceed $M$, in the space of tuples of polynomials. It is proved that as $M\to\infty$ this multiplicity grows no faster than $\sqrt M\exp[\omega\sqrt M]$, where $\omega>0$ is a certain constant.
@article{TM_2012_276_a19,
     author = {A. V. Pukhlikov},
     title = {On the multiplicity of solutions of a~system of algebraic equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {239--254},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a19/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - On the multiplicity of solutions of a~system of algebraic equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 239
EP  - 254
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a19/
LA  - ru
ID  - TM_2012_276_a19
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T On the multiplicity of solutions of a~system of algebraic equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 239-254
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a19/
%G ru
%F TM_2012_276_a19
A. V. Pukhlikov. On the multiplicity of solutions of a~system of algebraic equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 239-254. http://geodesic.mathdoc.fr/item/TM_2012_276_a19/

[1] Pukhlikov A.V., “Biratsionalno zhestkie mnogoobraziya s puchkom dvoinykh nakrytii Fano. II”, Mat. sb., 195:11 (2004), 119–156 | DOI | MR | Zbl

[2] Fulton W., Intersection theory, Springer, Berlin, 1984 ; Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR | Zbl | MR

[3] Pukhlikov A.V., “Birationally rigid Fano complete intersections”, J. reine angew. Math., 541 (2001), 55–79 | DOI | MR | Zbl