On the multiplicity of solutions of a system of algebraic equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 239-254
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain upper bounds for the multiplicity of an isolated solution of a system of equations $f_1=\dots=f_M=0$ in $M$ variables, where the set of polynomials $(f_1,\dots,f_M)$ is a tuple of general position in a subvariety of a given codimension which does not exceed $M$, in the space of tuples of polynomials. It is proved that as $M\to\infty$ this multiplicity grows no faster than $\sqrt M\exp[\omega\sqrt M]$, where $\omega>0$ is a certain constant.
@article{TM_2012_276_a19,
author = {A. V. Pukhlikov},
title = {On the multiplicity of solutions of a~system of algebraic equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {239--254},
year = {2012},
volume = {276},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a19/}
}
A. V. Pukhlikov. On the multiplicity of solutions of a system of algebraic equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 239-254. http://geodesic.mathdoc.fr/item/TM_2012_276_a19/
[1] Pukhlikov A.V., “Biratsionalno zhestkie mnogoobraziya s puchkom dvoinykh nakrytii Fano. II”, Mat. sb., 195:11 (2004), 119–156 | DOI | MR | Zbl
[2] Fulton W., Intersection theory, Springer, Berlin, 1984 ; Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR | Zbl | MR
[3] Pukhlikov A.V., “Birationally rigid Fano complete intersections”, J. reine angew. Math., 541 (2001), 55–79 | DOI | MR | Zbl