An extension of Motohashi's observation on the zero-free region of the Riemann zeta-function
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 233-238

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an extension of Yoichi Motohashi's theorem saying that if the Riemann zeta-function on the line $\operatorname{Re}s=1$ attains very small values, then Vinogradov's zero-free region can be improved.
@article{TM_2012_276_a18,
     author = {Sergei N. Preobrazhenskiǐ},
     title = {An extension of {Motohashi's} observation on the zero-free region of the {Riemann} zeta-function},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {233--238},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a18/}
}
TY  - JOUR
AU  - Sergei N. Preobrazhenskiǐ
TI  - An extension of Motohashi's observation on the zero-free region of the Riemann zeta-function
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 233
EP  - 238
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a18/
LA  - ru
ID  - TM_2012_276_a18
ER  - 
%0 Journal Article
%A Sergei N. Preobrazhenskiǐ
%T An extension of Motohashi's observation on the zero-free region of the Riemann zeta-function
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 233-238
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a18/
%G ru
%F TM_2012_276_a18
Sergei N. Preobrazhenskiǐ. An extension of Motohashi's observation on the zero-free region of the Riemann zeta-function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 233-238. http://geodesic.mathdoc.fr/item/TM_2012_276_a18/