An extension of Motohashi's observation on the zero-free region of the Riemann zeta-function
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 233-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an extension of Yoichi Motohashi's theorem saying that if the Riemann zeta-function on the line $\operatorname{Re}s=1$ attains very small values, then Vinogradov's zero-free region can be improved.
@article{TM_2012_276_a18,
     author = {Sergei N. Preobrazhenskiǐ},
     title = {An extension of {Motohashi's} observation on the zero-free region of the {Riemann} zeta-function},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {233--238},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a18/}
}
TY  - JOUR
AU  - Sergei N. Preobrazhenskiǐ
TI  - An extension of Motohashi's observation on the zero-free region of the Riemann zeta-function
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 233
EP  - 238
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a18/
LA  - ru
ID  - TM_2012_276_a18
ER  - 
%0 Journal Article
%A Sergei N. Preobrazhenskiǐ
%T An extension of Motohashi's observation on the zero-free region of the Riemann zeta-function
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 233-238
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a18/
%G ru
%F TM_2012_276_a18
Sergei N. Preobrazhenskiǐ. An extension of Motohashi's observation on the zero-free region of the Riemann zeta-function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 233-238. http://geodesic.mathdoc.fr/item/TM_2012_276_a18/

[1] Motohashi Y., “An observation on the zero-free region of the Riemann zeta-function”, Period. math. Hung., 42:1–2 (2001), 117–122 | DOI | MR | Zbl

[2] Levinson N., “$\Omega $-theorems for quotients of zeta-functions at combinations of points”, Proc. Nat. Acad. Sci. USA., 69:9 (1972), 2528–2529 | DOI | MR | Zbl

[3] Ford K., “Vinogradov's integral and bounds for the Riemann zeta function”, Proc. London Math. Soc., 85:3 (2002), 565–633 | DOI | MR | Zbl

[4] Voronin S.M., Karatsuba A.A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR

[5] Titchmarsh E.C., The theory of the Riemann zeta-function, 2nd ed., rev. by D.R. Heath-Brown, Clarendon Press, Oxford, 1986 | MR | Zbl

[6] Balakrishnan U., “On the sum of divisors function”, J. Number Theory., 51 (1995), 147–168 | DOI | MR | Zbl

[7] Barban M.B., Vekhov P.P., “Ob odnoi ekstremalnoi zadache”, Tr. Mosk. mat. o-va, 18 (1968), 83–90 | MR

[8] Graham S., Applications of sieve methods, PhD Thesis, Univ. Michigan, Ann Arbor, 1977 | MR | Zbl

[9] Graham S., “An asymptotic estimate related to Selberg's sieve”, J. Number Theory., 10 (1978), 83–94 | DOI | MR | Zbl