Voir la notice du chapitre de livre
@article{TM_2012_276_a17,
author = {J\'anos Pintz},
title = {Are there arbitrarily long arithmetic progressions in the sequence of twin {primes?~II}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {227--232},
year = {2012},
volume = {276},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a17/}
}
TY - JOUR AU - János Pintz TI - Are there arbitrarily long arithmetic progressions in the sequence of twin primes? II JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 227 EP - 232 VL - 276 UR - http://geodesic.mathdoc.fr/item/TM_2012_276_a17/ LA - en ID - TM_2012_276_a17 ER -
János Pintz. Are there arbitrarily long arithmetic progressions in the sequence of twin primes? II. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 227-232. http://geodesic.mathdoc.fr/item/TM_2012_276_a17/
[1] Chowla S., The Riemann hypothesis and Hilbert's tenth problem, Gordon and Breach, New York, 1965 | MR
[2] Elliott P.D.T.A., Halberstam H., “A conjecture in prime number theory”, Symposia mathematica. V. 4: Convegni del Dicembre del 1968 e del Marzo del 1969, Acad. Press, London; Ist. Naz. Alta Mat., Rome, 1970, 59–72 | MR
[3] Goldston D.A., Pintz J., Yıldırım C.Y., “Primes in tuples. I”, Ann. Math. Ser. 2, 170:2 (2009), 819–862 | DOI | MR | Zbl
[4] Green B., Tao T., “The primes contain arbitrarily long arithmetic progressions”, Ann. Math. Ser. 2, 167:2 (2008), 481–547 | DOI | MR | Zbl
[5] Hildebrand A.J., “Erdős' problems on consecutive integers”, Paul Erdős and his mathematics I, Bolyai Soc. Math. Stud., 11, J. Bolyai Math. Soc., Budapest, 2002, 305–317 | MR | Zbl
[6] Iwaniec H., “Prime numbers and $L$-functions”, Proc. Intern. Congr. Math., Madrid, 2006, V. 1, Eur. Math. Soc., Zürich, 2007, 279–306 | DOI | MR | Zbl
[7] Pintz J., “Are there arbitrarily long arithmetic progressions in the sequence of twin primes?”, An irregular mind: Szemerédi is 70, Bolyai Soc. Math. Stud., 21, eds. Ed. by I. Bárány, J. Solymosi, Springer, Berlin, 2010, 525–559 | DOI | MR | Zbl
[8] Pintz J., An approximation to the twin prime conjecture and the parity phenomenon, E-print, 2010, arXiv: 1004.1065v1 [math.NT] | MR
[9] Vaughan R.C., “An elementary method in prime number theory”, Recent progress in analytic number theory, Durham, 1979, V. 1, Acad. Press, London, 1981, 341–348 | MR
[10] Zhou B., “The Chen primes contain arbitrarily long arithmetic progressions”, Acta arith., 138:4 (2009), 301–315 | DOI | MR | Zbl