Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_276_a17, author = {J\'anos Pintz}, title = {Are there arbitrarily long arithmetic progressions in the sequence of twin {primes?~II}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {227--232}, publisher = {mathdoc}, volume = {276}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a17/} }
TY - JOUR AU - János Pintz TI - Are there arbitrarily long arithmetic progressions in the sequence of twin primes?~II JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 227 EP - 232 VL - 276 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_276_a17/ LA - en ID - TM_2012_276_a17 ER -
János Pintz. Are there arbitrarily long arithmetic progressions in the sequence of twin primes?~II. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 227-232. http://geodesic.mathdoc.fr/item/TM_2012_276_a17/
[1] Chowla S., The Riemann hypothesis and Hilbert's tenth problem, Gordon and Breach, New York, 1965 | MR
[2] Elliott P.D.T.A., Halberstam H., “A conjecture in prime number theory”, Symposia mathematica. V. 4: Convegni del Dicembre del 1968 e del Marzo del 1969, Acad. Press, London; Ist. Naz. Alta Mat., Rome, 1970, 59–72 | MR
[3] Goldston D.A., Pintz J., Yıldırım C.Y., “Primes in tuples. I”, Ann. Math. Ser. 2, 170:2 (2009), 819–862 | DOI | MR | Zbl
[4] Green B., Tao T., “The primes contain arbitrarily long arithmetic progressions”, Ann. Math. Ser. 2, 167:2 (2008), 481–547 | DOI | MR | Zbl
[5] Hildebrand A.J., “Erdős' problems on consecutive integers”, Paul Erdős and his mathematics I, Bolyai Soc. Math. Stud., 11, J. Bolyai Math. Soc., Budapest, 2002, 305–317 | MR | Zbl
[6] Iwaniec H., “Prime numbers and $L$-functions”, Proc. Intern. Congr. Math., Madrid, 2006, V. 1, Eur. Math. Soc., Zürich, 2007, 279–306 | DOI | MR | Zbl
[7] Pintz J., “Are there arbitrarily long arithmetic progressions in the sequence of twin primes?”, An irregular mind: Szemerédi is 70, Bolyai Soc. Math. Stud., 21, eds. Ed. by I. Bárány, J. Solymosi, Springer, Berlin, 2010, 525–559 | DOI | MR | Zbl
[8] Pintz J., An approximation to the twin prime conjecture and the parity phenomenon, E-print, 2010, arXiv: 1004.1065v1 [math.NT] | MR
[9] Vaughan R.C., “An elementary method in prime number theory”, Recent progress in analytic number theory, Durham, 1979, V. 1, Acad. Press, London, 1981, 341–348 | MR
[10] Zhou B., “The Chen primes contain arbitrarily long arithmetic progressions”, Acta arith., 138:4 (2009), 301–315 | DOI | MR | Zbl