Jacob's ladders, the structure of the Hardy--Littlewood integral and some new class of nonlinear integral equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 213-226
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we obtain new formulae for short and microscopic parts of the Hardy–Littlewood integral, and the first asymptotic formula for the sixth-order expression $|\zeta(\frac12+i\varphi _1(t))|^4|\zeta(\frac 12+it)|^2$. These formulae cannot be obtained in the theories of Balasubramanian, Heath-Brown and Ivić.
@article{TM_2012_276_a16,
author = {Jan Moser},
title = {Jacob's ladders, the structure of the {Hardy--Littlewood} integral and some new class of nonlinear integral equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {213--226},
publisher = {mathdoc},
volume = {276},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a16/}
}
TY - JOUR AU - Jan Moser TI - Jacob's ladders, the structure of the Hardy--Littlewood integral and some new class of nonlinear integral equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 213 EP - 226 VL - 276 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_276_a16/ LA - en ID - TM_2012_276_a16 ER -
%0 Journal Article %A Jan Moser %T Jacob's ladders, the structure of the Hardy--Littlewood integral and some new class of nonlinear integral equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 213-226 %V 276 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2012_276_a16/ %G en %F TM_2012_276_a16
Jan Moser. Jacob's ladders, the structure of the Hardy--Littlewood integral and some new class of nonlinear integral equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 213-226. http://geodesic.mathdoc.fr/item/TM_2012_276_a16/