Jacob's ladders, the structure of the Hardy--Littlewood integral and some new class of nonlinear integral equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 213-226

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain new formulae for short and microscopic parts of the Hardy–Littlewood integral, and the first asymptotic formula for the sixth-order expression $|\zeta(\frac12+i\varphi _1(t))|^4|\zeta(\frac 12+it)|^2$. These formulae cannot be obtained in the theories of Balasubramanian, Heath-Brown and Ivić.
@article{TM_2012_276_a16,
     author = {Jan Moser},
     title = {Jacob's ladders, the structure of the {Hardy--Littlewood} integral and some new class of nonlinear integral equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {213--226},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a16/}
}
TY  - JOUR
AU  - Jan Moser
TI  - Jacob's ladders, the structure of the Hardy--Littlewood integral and some new class of nonlinear integral equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 213
EP  - 226
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a16/
LA  - en
ID  - TM_2012_276_a16
ER  - 
%0 Journal Article
%A Jan Moser
%T Jacob's ladders, the structure of the Hardy--Littlewood integral and some new class of nonlinear integral equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 213-226
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a16/
%G en
%F TM_2012_276_a16
Jan Moser. Jacob's ladders, the structure of the Hardy--Littlewood integral and some new class of nonlinear integral equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 213-226. http://geodesic.mathdoc.fr/item/TM_2012_276_a16/