Diophantine approximation generalized
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 198-212

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the set of $x\in[0,1]$ for which the inequality $|x-x_n|$ holds for infinitely many $n=1,2,\dots$. Here $x_n\in[0,1)$ and $z_n>0$, $z_n\to0$, are sequences. In the first part of the paper we summarize known results. In the second part, using the theory of distribution functions of sequences, we find the asymptotic density of $n$ for which $|x-x_n|$, where $x$ is a discontinuity point of some distribution function of $x_n$. Generally, we also prove, for an arbitrary sequence $x_n$, that there exists $z_n$ such that the density of $n=1,2,\dots$, $x_n\to x$, is the same as the density of $n=1,2,\dots$, $|x-x_n|$, for $x\in[0,1]$. Finally we prove, using the longest gap $d_n$ in the finite sequence $x_1,x_2,\dots,x_n$, that if $d_n\le z_n$ for all $n$, $z_n\to0$, and $z_n$ is non-increasing, then $|x-x_n|$ holds for infinitely many $n$ and for almost all $x\in[0,1]$.
@article{TM_2012_276_a15,
     author = {Ladislav Mi\v{s}{\'\i}k and Oto Strauch},
     title = {Diophantine approximation generalized},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {198--212},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a15/}
}
TY  - JOUR
AU  - Ladislav Mišík
AU  - Oto Strauch
TI  - Diophantine approximation generalized
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 198
EP  - 212
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a15/
LA  - en
ID  - TM_2012_276_a15
ER  - 
%0 Journal Article
%A Ladislav Mišík
%A Oto Strauch
%T Diophantine approximation generalized
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 198-212
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a15/
%G en
%F TM_2012_276_a15
Ladislav Mišík; Oto Strauch. Diophantine approximation generalized. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 198-212. http://geodesic.mathdoc.fr/item/TM_2012_276_a15/