On universality of the Lerch zeta-function
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 173-181
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that the Lerch zeta-function $L(\lambda,\alpha,s)$ with transcendental parameter $\alpha$ is universal in the Voronin sense; i.e., every analytic function can be approximated by shifts $L(\lambda,\alpha,s+i\tau)$ uniformly on compact subsets of some region. In this paper, the universality for some classes of composite functions $F(L(\lambda,\alpha,s))$ is obtained. In particular, general theorems imply the universality of the functions $\sin(L(\lambda,\alpha,s))$ and $\sinh(L(\lambda,\alpha,s))$.
@article{TM_2012_276_a13,
author = {A. Laurin\v{c}ikas},
title = {On universality of the {Lerch} zeta-function},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {173--181},
publisher = {mathdoc},
volume = {276},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a13/}
}
A. Laurinčikas. On universality of the Lerch zeta-function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 173-181. http://geodesic.mathdoc.fr/item/TM_2012_276_a13/