Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_276_a13, author = {A. Laurin\v{c}ikas}, title = {On universality of the {Lerch} zeta-function}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {173--181}, publisher = {mathdoc}, volume = {276}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a13/} }
A. Laurinčikas. On universality of the Lerch zeta-function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 173-181. http://geodesic.mathdoc.fr/item/TM_2012_276_a13/
[1] Lerch M., “Note sur la fonction $\mathfrak K(w,x,s)=\sum _{k=0}^\infty \frac {e^{2k\pi ix}}{(w+k)^s}$”, Acta math., 11 (1887), 19–24 | DOI | MR
[2] Lipschitz R., “Untersuchung der Eigenschaften einer Gattung von unendlichen Reihen”, J. reine angew. Math., 105 (1889), 127–156
[3] Laurinčikas A., Garunkštis R., The Lerch zeta-function, Kluwer, Dordrecht, 2002 | MR | Zbl
[4] Voronin S.M., “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. mat., 39:3 (1975), 475–486 | MR | Zbl
[5] Laurinčikas A., Limit theorems for the Riemann zeta-function, Kluwer, Dordrecht, 1996 | MR
[6] Gonek S.M., Analytic properties of zeta and $L$-functions, Ph.D. Thes., Univ. Michigan, Ann Arbor, 1979 | MR
[7] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph.D. Thes., Indian Stat. Inst., Calcutta, 1981
[8] Laurinchikas A., “Universalnost dzeta-funktsii Lerkha”, Liet. Mat. Rink., 37:3 (1997), 367–375 | MR
[9] Laurinčikas A., “Universality of the Riemann zeta-function”, J. Number Theory., 130 (2010), 2323–2331 | DOI | MR | Zbl
[10] Billingsley P., Convergence of probability measures, J. Wiley and Sons, New York, 1968 | MR | Zbl
[11] Conway J.B., Functions of one complex variable, Springer, New York, 1973 | MR | Zbl
[12] Mergelyan S.N., “Ravnomernye priblizheniya funktsii kompleksnoi peremennoi”, UMN, 7:2 (1952), 31–122 | MR | Zbl
[13] Walsh J.L., Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., 20, Amer. Math. Soc., Providence, RI, 1960 | MR | Zbl