On the general additive divisor problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 146-154

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a new upper bound for the sum $\sum_{h\le H}\Delta_k(N,h)$ when $1\le H\le N$, $k\in\mathbb N$, $k\ge3$, where $\Delta_k(N,h)$ is the (expected) error term in the asymptotic formula for $\sum_{N$, and $d_k(n)$ is the divisor function generated by $\zeta(s)^k$. When $k=3$, the result improves, for $H\ge N^{1/2}$, the bound given in a recent work of Baier, Browning, Marasingha and Zhao, who dealt with the case $k=3$.
@article{TM_2012_276_a10,
     author = {Aleksandar Ivi\'c and Jie Wu},
     title = {On the general additive divisor problem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {146--154},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a10/}
}
TY  - JOUR
AU  - Aleksandar Ivić
AU  - Jie Wu
TI  - On the general additive divisor problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 146
EP  - 154
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a10/
LA  - en
ID  - TM_2012_276_a10
ER  - 
%0 Journal Article
%A Aleksandar Ivić
%A Jie Wu
%T On the general additive divisor problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 146-154
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a10/
%G en
%F TM_2012_276_a10
Aleksandar Ivić; Jie Wu. On the general additive divisor problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 146-154. http://geodesic.mathdoc.fr/item/TM_2012_276_a10/