On the general additive divisor problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 146-154
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a new upper bound for the sum $\sum_{h\le H}\Delta_k(N,h)$ when $1\le H\le N$, $k\in\mathbb N$, $k\ge3$, where $\Delta_k(N,h)$ is the (expected) error term in the asymptotic formula for $\sum_{N$, and $d_k(n)$ is the divisor function generated by $\zeta(s)^k$. When $k=3$, the result improves, for $H\ge N^{1/2}$, the bound given in a recent work of Baier, Browning, Marasingha and Zhao, who dealt with the case $k=3$.
@article{TM_2012_276_a10,
author = {Aleksandar Ivi\'c and Jie Wu},
title = {On the general additive divisor problem},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {146--154},
publisher = {mathdoc},
volume = {276},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a10/}
}
Aleksandar Ivić; Jie Wu. On the general additive divisor problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 146-154. http://geodesic.mathdoc.fr/item/TM_2012_276_a10/