On the law of the iterated logarithm for permuted lacunary sequences
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 9-26
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that for any smooth periodic function $f$ the sequence $(f(2^kx))_{k\ge1}$ behaves like a sequence of i.i.d. random variables; for example, it satisfies the central limit theorem and the law of the iterated logarithm. Recently Fukuyama showed that permuting $(f(2^kx))_{k\ge1}$ can ruin the validity of the law of the iterated logarithm, a very surprising result. In this paper we present an optimal condition on $(n_k)_{k\ge1}$, formulated in terms of the number of solutions of certain Diophantine equations, which ensures the validity of the law of the iterated logarithm for any permutation of the sequence $(f(n_k x))_{k\geq1}$. A similar result is proved for the discrepancy of the sequence $(\{n_k x\})_{k\geq1}$, where $\{\cdot\}$ denotes the fractional part.
@article{TM_2012_276_a1,
author = {C. Aistleitner and I. Berkes and R. Tichy},
title = {On the law of the iterated logarithm for permuted lacunary sequences},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {9--26},
publisher = {mathdoc},
volume = {276},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a1/}
}
TY - JOUR AU - C. Aistleitner AU - I. Berkes AU - R. Tichy TI - On the law of the iterated logarithm for permuted lacunary sequences JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 9 EP - 26 VL - 276 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_276_a1/ LA - en ID - TM_2012_276_a1 ER -
C. Aistleitner; I. Berkes; R. Tichy. On the law of the iterated logarithm for permuted lacunary sequences. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 9-26. http://geodesic.mathdoc.fr/item/TM_2012_276_a1/