On the law of the iterated logarithm for permuted lacunary sequences
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 9-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that for any smooth periodic function $f$ the sequence $(f(2^kx))_{k\ge1}$ behaves like a sequence of i.i.d. random variables; for example, it satisfies the central limit theorem and the law of the iterated logarithm. Recently Fukuyama showed that permuting $(f(2^kx))_{k\ge1}$ can ruin the validity of the law of the iterated logarithm, a very surprising result. In this paper we present an optimal condition on $(n_k)_{k\ge1}$, formulated in terms of the number of solutions of certain Diophantine equations, which ensures the validity of the law of the iterated logarithm for any permutation of the sequence $(f(n_k x))_{k\geq1}$. A similar result is proved for the discrepancy of the sequence $(\{n_k x\})_{k\geq1}$, where $\{\cdot\}$ denotes the fractional part.
@article{TM_2012_276_a1,
     author = {C. Aistleitner and I. Berkes and R. Tichy},
     title = {On the law of the iterated logarithm for permuted lacunary sequences},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {9--26},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a1/}
}
TY  - JOUR
AU  - C. Aistleitner
AU  - I. Berkes
AU  - R. Tichy
TI  - On the law of the iterated logarithm for permuted lacunary sequences
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 9
EP  - 26
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a1/
LA  - en
ID  - TM_2012_276_a1
ER  - 
%0 Journal Article
%A C. Aistleitner
%A I. Berkes
%A R. Tichy
%T On the law of the iterated logarithm for permuted lacunary sequences
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 9-26
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a1/
%G en
%F TM_2012_276_a1
C. Aistleitner; I. Berkes; R. Tichy. On the law of the iterated logarithm for permuted lacunary sequences. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 9-26. http://geodesic.mathdoc.fr/item/TM_2012_276_a1/

[1] Aistleitner C., “Irregular discrepancy behavior of lacunary series”, Monatsh. Math., 160:1 (2010), 1–29 | DOI | MR | Zbl

[2] Aistleitner C., “Irregular discrepancy behavior of lacunary series. II”, Monatsh. Math., 161:3 (2010), 255–270 | DOI | MR | Zbl

[3] Aistleitner C., “On the law of the iterated logarithm for the discrepancy of lacunary sequences”, Trans. Amer. Math. Soc., 362:11 (2010), 5967–5982 | DOI | MR | Zbl

[4] Aistleitner C., Berkes I., “On the central limit theorem for $f(n_kx)$”, Probab. Theory Relat. Fields, 146:1–2 (2010), 267–289 | DOI | MR

[5] Aistleitner C., Berkes I., Tichy R., “On permutations of lacunary series”, RIMS Kôkyûroku Bessatsu (to appear) | MR

[6] Conze J.-P., Le Borgne S., “Limit law for some modified ergodic sums”, Stoch. Dyn., 11:1 (2011), 107–133 | DOI | MR | Zbl

[7] Erdős P., Gál I.S., “On the law of the iterated logarithm. I, II”, Ned. Akad. Wet. Proc. Ser. A., 58 (1955), 65–76 | MR | Zbl

[8] Fukuyama K., “The law of the iterated logarithm for discrepancies of $\{\theta ^nx\}$”, Acta math. Hung., 118:1–2 (2008), 155–170 | DOI | MR | Zbl

[9] Fukuyama K., “The law of the iterated logarithm for the discrepancies of a permutation of $\{n_kx\}$”, Acta math. Hung., 123:1–2 (2009), 121–125 | DOI | MR | Zbl

[10] Fukuyama K., “A central limit theorem and a metric discrepancy result for sequences with bounded gaps”, Dependence in probability, analysis and number theory: A volume in memory of Walter Philipp, Ed. by I. Berkes et al., Kendrick Press, Heber City, UT, 2010, 233–246 | MR | Zbl

[11] Fukuyama K., Miyamoto S., “Metric discrepancy results for Erdős–Fortet sequence”, Stud. sci. math. Hung., 2011 | DOI | MR

[12] Gaposhkin V.F., “Lacunary series and independent functions”, Russ. Math. Surv., 21:6 (1966), 1–82 | DOI | MR | Zbl

[13] Gaposhkin V.F., “The central limit theorem for some weakly dependent sequences”, Theory Probab. Appl., 15 (1970), 649–666 | DOI | Zbl

[14] Izumi S., “Notes on Fourier analysis. XLIV: On the law of the iterated logarithm of some sequences of functions”, J. Math. Tokyo, 1 (1951), 1–22 | MR | Zbl

[15] Kac M., “On the distribution of values of sums of the type $\sum f(2^k t)$”, Ann. Math., 47 (1946), 33–49 | DOI | MR | Zbl

[16] Kac M., “Probability methods in some problems of analysis and number theory”, Bull. Amer. Math. Soc., 55 (1949), 641–665 | DOI | MR | Zbl

[17] Maruyama G., “On an asymptotic property of a gap sequence”, Kōdai Math. Semin. Rep., 2 (1950), 31–32 | DOI | MR

[18] Peres Y., Schlag W., “Two Erdős problems on lacunary sequences: chromatic number and Diophantine approximation”, Bull. London Math. Soc., 42:2 (2010), 295–300 | DOI | MR | Zbl

[19] Philipp W., “Limit theorems for lacunary series and uniform distribution mod $1$”, Acta arith., 26:3 (1975), 241–251 | MR | Zbl

[20] Rényi A., Probability theory, North-Holland Ser. Appl. Math. Mech., 10, North-Holland, Amsterdam, 1970 | MR

[21] Révész P., “The law of the iterated logarithm for multiplicative systems”, Indiana Univ. Math. J., 21 (1972), 557–564 | DOI | MR | Zbl

[22] Shorack G.R., Wellner J.A., Empirical processes with applications to statistics, Wiley Ser. Probab. Math. Stat., J. Wiley Sons, New York, 1986 | MR

[23] Takahashi S., “An asymptotic property of a gap sequence”, Proc. Japan Acad., 38 (1962), 101–104 | DOI | MR | Zbl

[24] Weyl H., “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77:3 (1916), 313–352 | DOI | MR | Zbl

[25] Zygmund A., Trigonometric series, V. 1, 2, 3rd ed., Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl