Induced representations, transferred Chern classes and Morava rings $K(s)^*(BG)$: Some calculations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 172-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The ring structure of Morava $K$-theory $K(s)^*(BG)$ for the 2-group no. 38 of order $32$ from the Hall–Senior list is calculated. Previously it was known that $K(s)^*(BG)$ is evenly generated and for $s=2$ is generated by Chern characteristic classes.
@article{TM_2011_275_a9,
     author = {Malkhaz Bakuradze},
     title = {Induced representations, transferred {Chern} classes and {Morava} rings $K(s)^*(BG)$: {Some} calculations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {172--180},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a9/}
}
TY  - JOUR
AU  - Malkhaz Bakuradze
TI  - Induced representations, transferred Chern classes and Morava rings $K(s)^*(BG)$: Some calculations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 172
EP  - 180
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_275_a9/
LA  - en
ID  - TM_2011_275_a9
ER  - 
%0 Journal Article
%A Malkhaz Bakuradze
%T Induced representations, transferred Chern classes and Morava rings $K(s)^*(BG)$: Some calculations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 172-180
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_275_a9/
%G en
%F TM_2011_275_a9
Malkhaz Bakuradze. Induced representations, transferred Chern classes and Morava rings $K(s)^*(BG)$: Some calculations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 172-180. http://geodesic.mathdoc.fr/item/TM_2011_275_a9/

[1] Adams J.F., Infinite loop spaces, Ann. Math. Stud., 90, Princeton Univ. Press, Princeton, NJ, 1978 | MR | Zbl

[2] Bakuradze M., “Morava $K$-theory rings for the modular groups in Chern classes”, K-Theory, 38:2 (2008), 87–94 | DOI | MR | Zbl

[3] Bakuradze M., Priddy S., “Transferred Chern classes in Morava $K$-theory”, Proc. Amer. Math. Soc., 132:6 (2004), 1855–1860 | DOI | MR | Zbl

[4] Bakuradze M., Vershinin V., “Morava $K$-theory rings for the dihedral, semidihedral and generalized quaternion groups in Chern classes”, Proc. Amer. Math. Soc., 134:12 (2006), 3707–3714 | DOI | MR | Zbl

[5] Dold A., “The fixed point transfer of fibre-preserving maps”, Math. Ztschr., 148 (1976), 215–244 | DOI | MR | Zbl

[6] Hall M., Jr., Senior J.K., The groups of order $2^n$, $n\leq 6$, Macmillan, New York, 1964 | MR | Zbl

[7] Hopkins M.J., Kuhn N.J., Ravenel D.C., “Generalized group characters and complex oriented cohomology theories”, J. Amer. Math. Soc., 13:3 (2000), 553–594 | DOI | MR | Zbl

[8] Kahn D.S., Priddy S.B., “Applications of the transfer to stable homotopy theory”, Bull. Amer. Math. Soc., 78 (1972), 981–987 | DOI | MR | Zbl

[9] Schuster B., “Morava $K$-theory of groups of order 32”, Alg. and Geom. Topol., 11 (2011), 503–521 | DOI | MR | Zbl

[10] Schuster B., “$K(n)$ Chern approximations of some finite groups”, Alg. and Geom. Topol. (to appear) | MR