One-side Peano curves of fractal genus~$9$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 55-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper completes the analysis (begun by E. V. Shchepin and the author in 2008) of regular Peano curves of genus $9$ in search of a curve with the minimum square-to-linear ratio. One-side regular Peano curves of genus $9$ are considered, and, among these curves, a class of minimal curves with a square-to-linear ratio of $5\frac 23$ is singled out. A new language to describe curves is introduced which significantly simplifies the coding of these curves.
@article{TM_2011_275_a2,
     author = {K. E. Bauman},
     title = {One-side {Peano} curves of fractal genus~$9$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {55--67},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a2/}
}
TY  - JOUR
AU  - K. E. Bauman
TI  - One-side Peano curves of fractal genus~$9$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 55
EP  - 67
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_275_a2/
LA  - ru
ID  - TM_2011_275_a2
ER  - 
%0 Journal Article
%A K. E. Bauman
%T One-side Peano curves of fractal genus~$9$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 55-67
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_275_a2/
%G ru
%F TM_2011_275_a2
K. E. Bauman. One-side Peano curves of fractal genus~$9$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 55-67. http://geodesic.mathdoc.fr/item/TM_2011_275_a2/

[1] Schepin E.V., “Povyshayuschie razmernost otobrazheniya i nepreryvnaya peredacha informatsii”, Voprosy chistoi i prikladnoi matematiki, T. 1, Priok. kn. izd-vo, Tula, 1987, 148–155

[2] Schepin E.V., “O fraktalnykh krivykh Peano”, Tr. MIAN, 247, 2004, 294–303

[3] Schepin E.V., Bauman K.E., “O krivykh Peano fraktalnogo roda $9$”, Modelirovanie i analiz dannykh, Tr. fak. inform. tekhnol. MGPPU, Vyp. 1, Rusavia, M., 2004, 79–89

[4] Schepin E.V., Bauman K.E., “Minimalnaya krivaya Peano”, Tr. MIAN., 263 (2008), 251–271 | MR

[5] Bauman K.E., “Koeffitsient rastyazheniya krivoi Peano–Gilberta”, Mat. zametki, 80:5 (2006), 643–656 | DOI | MR | Zbl

[6] Sagan H., Space-filling curves, Universitext, Springer, New York, 1994 | DOI | MR | Zbl

[7] Wunderlich W., “Über Peano-Kurven”, Elem. Math., 28:1 (1973), 1–10 | MR | Zbl

[8] Haverkort H., van Walderveen F., Locality and bounding-box quality of two-dimensional space-filling curves, E-print, 2008, arXiv: 0806.4787v2 [cs.CG]

[9] Niedermeier R., Reinhardt K., Sanders P., “Towards optimal locality in mesh-indexings”, Discr. Appl. Math., 117:1–3 (2002), 211–237 | DOI | MR | Zbl