A counterexample to Valette's conjecture
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 301-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

We disprove a well-known conjecture of D. Vallete (1978), which states that every $d$-dimensional self-affine convex body is a direct product of a polytope with a convex body of lower dimension. It is shown that there are counterexamples for dimension $d=4$. Additional assumptions under which the conjecture is true are discussed.
@article{TM_2011_275_a19,
     author = {A. Voynov},
     title = {A counterexample to {Valette's} conjecture},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {301--303},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a19/}
}
TY  - JOUR
AU  - A. Voynov
TI  - A counterexample to Valette's conjecture
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 301
EP  - 303
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_275_a19/
LA  - en
ID  - TM_2011_275_a19
ER  - 
%0 Journal Article
%A A. Voynov
%T A counterexample to Valette's conjecture
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 301-303
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_275_a19/
%G en
%F TM_2011_275_a19
A. Voynov. A counterexample to Valette's conjecture. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 301-303. http://geodesic.mathdoc.fr/item/TM_2011_275_a19/

[1] Croft H.T., Falconer K.J., Guy R.K., Unsolved problems in geometry, Problem Books in Mathematics, 2, Springer, New York, 1991 | DOI | MR | Zbl

[2] Contributions to geometry, Proc. Geometry-Symp., Siegen (Germany), June 28–July 1, 1978, eds. J. Tölke, J.M. Wills, Birkhäuser, Basel, 1979 | MR

[3] Richter C., “Self-affine convex discs are polygons”, Beitr. Alg. und Geom, 2011 | DOI | MR

[4] Hertel E., Richter C., “Self-afine convex polygons”, J. Geom., 98:1–2 (2010), 79–89 | DOI | MR | Zbl

[5] Voinov A.S., “Samoaffinnye mnogogranniki. Prilozheniya k funktsionalnym uravneniyam i teorii matrits”, Mat. sb., 202:10 (2011), 3–30 | DOI | MR