Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_275_a19, author = {A. Voynov}, title = {A counterexample to {Valette's} conjecture}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {301--303}, publisher = {mathdoc}, volume = {275}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a19/} }
A. Voynov. A counterexample to Valette's conjecture. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 301-303. http://geodesic.mathdoc.fr/item/TM_2011_275_a19/
[1] Croft H.T., Falconer K.J., Guy R.K., Unsolved problems in geometry, Problem Books in Mathematics, 2, Springer, New York, 1991 | DOI | MR | Zbl
[2] Contributions to geometry, Proc. Geometry-Symp., Siegen (Germany), June 28–July 1, 1978, eds. J. Tölke, J.M. Wills, Birkhäuser, Basel, 1979 | MR
[3] Richter C., “Self-affine convex discs are polygons”, Beitr. Alg. und Geom, 2011 | DOI | MR
[4] Hertel E., Richter C., “Self-afine convex polygons”, J. Geom., 98:1–2 (2010), 79–89 | DOI | MR | Zbl
[5] Voinov A.S., “Samoaffinnye mnogogranniki. Prilozheniya k funktsionalnym uravneniyam i teorii matrits”, Mat. sb., 202:10 (2011), 3–30 | DOI | MR