Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_275_a17, author = {Shintar\^o Kuroki}, title = {Equivariant cohomology distinguishes the geometric structures of toric hyperk\"ahler manifolds}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {262--294}, publisher = {mathdoc}, volume = {275}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a17/} }
TY - JOUR AU - Shintarô Kuroki TI - Equivariant cohomology distinguishes the geometric structures of toric hyperk\"ahler manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 262 EP - 294 VL - 275 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2011_275_a17/ LA - en ID - TM_2011_275_a17 ER -
%0 Journal Article %A Shintarô Kuroki %T Equivariant cohomology distinguishes the geometric structures of toric hyperk\"ahler manifolds %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2011 %P 262-294 %V 275 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2011_275_a17/ %G en %F TM_2011_275_a17
Shintarô Kuroki. Equivariant cohomology distinguishes the geometric structures of toric hyperk\"ahler manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 262-294. http://geodesic.mathdoc.fr/item/TM_2011_275_a17/
[1] Atiyah M.F., Bott R., “The moment map and equivariant cohomology”, Topology, 23 (1984), 1–28 | DOI | MR | Zbl
[2] Bielawski R., “Complete hyperkähler $4n$-manifolds with a local tri-Hamiltonian $\mathbb R^n$-action”, Math. Ann., 314:3 (1999), 505–528 | DOI | MR | Zbl
[3] Bielawski R., Dancer A.S., “The geometry and topology of toric hyperkähler manifolds”, Commun. Anal. and Geom., 8:4 (2000), 727–760 | MR | Zbl
[4] Bredon G.E., Introduction to compact transformation groups, Acad. Press, New York, 1972 | MR | Zbl
[5] Delzant T., “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. math. France, 116:3 (1988), 315–339 | MR | Zbl
[6] Fulton W., Introduction to toric varieties, Ann. Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[7] Goto R., “On toric hyper-Kähler manifolds given by the hyper-Kähler quotient method”, Intern. J. Mod. Phys. A, 7, Suppl. 1A (1992), 317–338 | DOI | MR | Zbl
[8] Guillemin V.W., Sternberg S., Supersymmetry and equivariant de Rham theory, Springer, Berlin, 1999 | MR
[9] Harada M., Holm T.S., “The equivariant cohomology of hypertoric varieties and their real loci”, Commun. Anal. and Geom., 13:3 (2005), 527–559 | DOI | MR | Zbl
[10] Hattori A., Masuda M., “Theory of multi-fans”, Osaka J. Math., 40:1 (2003), 1–68 | MR | Zbl
[11] Harada M., Proudfoot N., “Properties of the residual circle action on a hypertoric variety”, Pac. J. Math., 214:2 (2004), 263–284 | DOI | MR | Zbl
[12] Hausel T., Sturmfels B., “Toric hyperkähler varieties”, Doc. math., 7 (2002), 495–534 | MR | Zbl
[13] Hsiang W.Y., Cohomology theory of topological transformation groups, Ergebn. Math., 85, Springer, Berlin, 1975 | MR | Zbl
[14] Kawakubo K., The theory of transformation groups, Oxford Univ. Press, London, 1991 | MR | Zbl
[15] Konno H., “Equivariant cohomology rings of toric hyperkähler manifolds”, Quaternionic structures in mathematics and physics, Rome, 1999, Univ. Roma “La Sapienza”, Rome, 2001, 231–240, electronic | MR | Zbl
[16] Konno H., “Cohomology rings of toric hyperkähler manifolds”, Intern. J. Math., 11:8 (2000), 1001–1026 | DOI | MR | Zbl
[17] Konno H., “The geometry of toric hyperkähler varieties”, Toric topology, Proc. Intern. Conf., Osaka, 2006, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 241–260 | DOI | MR | Zbl
[18] Masuda M., “Unitary toric manifolds, multi-fans and equivariant index”, Tohoku Math. J., 51:2 (1999), 237–265 | DOI | MR | Zbl
[19] Masuda M., “Equivariant cohomology distinguishes toric manifolds”, Adv. Math., 218:6 (2008), 2005–2012 | DOI | MR | Zbl
[20] Mimura M., Toda H., Topology of Lie groups, I and II, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl
[21] Oda T., Convex bodies and algebraic geometry: An introduction to the theory of toric varieties, Ergebn. Math. Grenzgeb. 3. Flg., 15, Springer, Berlin, 1988 | MR
[22] Proudfoot N.J., “A survey of hypertoric geometry and topology”, Toric topology, Proc. Intern. Conf., Osaka, 2006, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 323–338 | DOI | MR | Zbl