Equivariant Schubert calculus of Coxeter groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 250-261

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an equivariant extension for Hiller's Schubert calculus on the coinvariant ring of a finite Coxeter group.
@article{TM_2011_275_a16,
     author = {Shizuo Kaji},
     title = {Equivariant {Schubert} calculus of {Coxeter} groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {250--261},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a16/}
}
TY  - JOUR
AU  - Shizuo Kaji
TI  - Equivariant Schubert calculus of Coxeter groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 250
EP  - 261
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_275_a16/
LA  - en
ID  - TM_2011_275_a16
ER  - 
%0 Journal Article
%A Shizuo Kaji
%T Equivariant Schubert calculus of Coxeter groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 250-261
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_275_a16/
%G en
%F TM_2011_275_a16
Shizuo Kaji. Equivariant Schubert calculus of Coxeter groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 250-261. http://geodesic.mathdoc.fr/item/TM_2011_275_a16/