Equivariant Schubert calculus of Coxeter groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 250-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an equivariant extension for Hiller's Schubert calculus on the coinvariant ring of a finite Coxeter group.
@article{TM_2011_275_a16,
     author = {Shizuo Kaji},
     title = {Equivariant {Schubert} calculus of {Coxeter} groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {250--261},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a16/}
}
TY  - JOUR
AU  - Shizuo Kaji
TI  - Equivariant Schubert calculus of Coxeter groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 250
EP  - 261
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_275_a16/
LA  - en
ID  - TM_2011_275_a16
ER  - 
%0 Journal Article
%A Shizuo Kaji
%T Equivariant Schubert calculus of Coxeter groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 250-261
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_275_a16/
%G en
%F TM_2011_275_a16
Shizuo Kaji. Equivariant Schubert calculus of Coxeter groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 250-261. http://geodesic.mathdoc.fr/item/TM_2011_275_a16/

[1] Atiyah M.F., Macdonald I.G., Introduction to commutative algebra, Addison-Wesley, Reading, MA, 1969 | MR | Zbl

[2] Bernshtein I.N., Gelfand I.M., Gelfand S.I., “Kletki Shuberta i kogomologii prostranstv $G/P$”, UMN, 28:3 (1973), 3–26

[3] Billey S.C., “Kostant polynomials and the cohomology ring for $G/B$”, Duke Math. J., 96:1 (1999), 205–224 | DOI | MR | Zbl

[4] Borel A., Linear algebraic groups, Grad. Texts Math., 126, 2nd ed., Springer, New York, 1991 | DOI | MR | Zbl

[5] Borel A., “Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts”, Ann. Math. Ser. 2, 57 (1953), 115–207 | DOI | MR | Zbl

[6] Bourbaki N., Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Masson, Paris, 1981 | MR

[7] Demazure M., “Invariants symétriques entiers des groupes de Weyl et torsion”, Invent. math., 21 (1973), 287–301 | DOI | MR | Zbl

[8] Fulton W., Pragacz P., Schubert varieties and degeneracy loci, (Lect. Notes Math.; V. 1689)., 1689, Springer, Berlin, 1998 | MR | Zbl

[9] Goresky M., Kottwitz R., MacPherson R., “Equivariant cohomology, Koszul duality, and the localization theorem”, Invent. math., 131 (1998), 25–83 | DOI | MR | Zbl

[10] Hiller H., Geometry of Coxeter groups, Res. Notes Math., 54, Pitman Adv. Publ. Program, Boston, 1982 | MR | Zbl

[11] Humphreys J.E., Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., 29, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[12] Kaji S., “Schubert calculus, seen from torus equivariant topology”, Trends Math. New Ser. Inf. Cent. Math. Sci., 12:1 (2010), 71–90

[13] Knutson A., A Schubert calculus recurrence from the noncomplex $W$-action on $G/B$, E-print, 2003, arXiv: math/0306304v1 [math.CO]

[14] Kresch A., Tamvakis H., “Double Schubert polynomials and degeneracy loci for the classical groups”, Ann. Inst. Fourier, 52:6 (2002), 1681–1727 | DOI | MR | Zbl

[15] Kumar S., Kac–Moody groups, their flag varieties and representation theory, Prog. Math., 204, Birkhäuser, Boston, MA, 2002 | MR | Zbl

[16] Lascoux A., Schützenberger M.-P., “Polynômes de Schubert”, C. r. Acad. sci. Paris. Sér. 1: Math., 294:13 (1982), 447–450 | MR | Zbl