Bounded homotopy theory and the $K$-theory of weighted complexes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 210-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a bounding class $\mathcal B$, we construct a bounded refinement $\mathcal BK(-)$ of Quillen's $K$-theory functor from rings to spaces. As defined, $\mathcal BK(-)$ is a functor from weighted rings to spaces, and is equipped with a comparison map $\mathcal BK\to K$ induced by “forgetting control”. In contrast to the situation with $\mathcal B$-bounded cohomology, there is a functorial splitting $\mathcal BK(-)\simeq K(-)\times\mathcal BK^\mathrm{rel}(-)$ where $\mathcal BK^\mathrm{rel}(-)$ is the homotopy fiber of the comparison map.
@article{TM_2011_275_a13,
     author = {J. Fowler and C. Ogle},
     title = {Bounded homotopy theory and the $K$-theory of weighted complexes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {210--226},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a13/}
}
TY  - JOUR
AU  - J. Fowler
AU  - C. Ogle
TI  - Bounded homotopy theory and the $K$-theory of weighted complexes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 210
EP  - 226
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_275_a13/
LA  - en
ID  - TM_2011_275_a13
ER  - 
%0 Journal Article
%A J. Fowler
%A C. Ogle
%T Bounded homotopy theory and the $K$-theory of weighted complexes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 210-226
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_275_a13/
%G en
%F TM_2011_275_a13
J. Fowler; C. Ogle. Bounded homotopy theory and the $K$-theory of weighted complexes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 210-226. http://geodesic.mathdoc.fr/item/TM_2011_275_a13/

[1] Ji R., Ogle C., Ramsey B., $\mathcal B $-bounded cohomology and applications, E-print, 2010, arXiv: 1004.4677v4 [math.KT] | MR | Zbl

[2] Ji R., Ogle C., Ramsey B., “Relatively hyperbolic groups, rapid decay algebras, and a generalization of the Bass conjecture”, J. Noncommut. Geom., 4:1 (2010), 83–124 | MR | Zbl

[3] Mineyev I., “Bounded cohomology characterizes hyperbolic groups”, Quart. J. Math., 53:1 (2002), 59–73 | DOI | MR | Zbl

[4] Ranicki A., “The algebraic theory of finiteness obstruction”, Math. scand., 57 (1985), 105–126 | MR | Zbl

[5] Ranicki A., Yamasaki M., “Controlled $K$-theory”, Topol. and Appl., 61:1 (1995), 1–59 | DOI | MR | Zbl

[6] Waldhausen F., “Algebraic K-theory of spaces”, Algebraic and geometric topology, Proc. Conf. Rutgers Univ., New Brunswick (USA), 1983, Lect. Notes Math., 1126, Springer, Berlin, 1985, 318–419 | DOI | MR