Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_275_a13, author = {J. Fowler and C. Ogle}, title = {Bounded homotopy theory and the $K$-theory of weighted complexes}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {210--226}, publisher = {mathdoc}, volume = {275}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a13/} }
TY - JOUR AU - J. Fowler AU - C. Ogle TI - Bounded homotopy theory and the $K$-theory of weighted complexes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 210 EP - 226 VL - 275 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2011_275_a13/ LA - en ID - TM_2011_275_a13 ER -
J. Fowler; C. Ogle. Bounded homotopy theory and the $K$-theory of weighted complexes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 210-226. http://geodesic.mathdoc.fr/item/TM_2011_275_a13/
[1] Ji R., Ogle C., Ramsey B., $\mathcal B $-bounded cohomology and applications, E-print, 2010, arXiv: 1004.4677v4 [math.KT] | MR | Zbl
[2] Ji R., Ogle C., Ramsey B., “Relatively hyperbolic groups, rapid decay algebras, and a generalization of the Bass conjecture”, J. Noncommut. Geom., 4:1 (2010), 83–124 | MR | Zbl
[3] Mineyev I., “Bounded cohomology characterizes hyperbolic groups”, Quart. J. Math., 53:1 (2002), 59–73 | DOI | MR | Zbl
[4] Ranicki A., “The algebraic theory of finiteness obstruction”, Math. scand., 57 (1985), 105–126 | MR | Zbl
[5] Ranicki A., Yamasaki M., “Controlled $K$-theory”, Topol. and Appl., 61:1 (1995), 1–59 | DOI | MR | Zbl
[6] Waldhausen F., “Algebraic K-theory of spaces”, Algebraic and geometric topology, Proc. Conf. Rutgers Univ., New Brunswick (USA), 1983, Lect. Notes Math., 1126, Springer, Berlin, 1985, 318–419 | DOI | MR