Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_275_a11, author = {Suyoung Choi and Mikiya Masuda and Dong Youp Suh}, title = {Rigidity problems in toric topology: {A~survey}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {188--201}, publisher = {mathdoc}, volume = {275}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a11/} }
TY - JOUR AU - Suyoung Choi AU - Mikiya Masuda AU - Dong Youp Suh TI - Rigidity problems in toric topology: A~survey JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 188 EP - 201 VL - 275 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2011_275_a11/ LA - en ID - TM_2011_275_a11 ER -
Suyoung Choi; Mikiya Masuda; Dong Youp Suh. Rigidity problems in toric topology: A~survey. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 188-201. http://geodesic.mathdoc.fr/item/TM_2011_275_a11/
[1] Buchstaber V.M., Panov T.E., Torus actions and their applications in topology and combinatorics, Univ. Lect. Ser., 24, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[2] Cao X., Lü Z., “Cohomological rigidity and the number of homeomorphism types for small covers over prisms”, Topol. and Appl., 158:6 (2011), 813–834, arXiv: 0903.3653v3 [math.GT] | DOI | MR | Zbl
[3] Charlap L.S., “Compact flat Riemannian manifolds. I”, Ann. Math. Ser. 2, 81 (1965), 15–30 | DOI | MR | Zbl
[4] Choi S., Cohomological rigidity for Bott manifolds up to dimension eight, In preparation
[5] Choi S., Torus actions on cohomology generalized Bott manifolds, E-print, 2011, arXiv: 1101.5714v1 [math.AT]
[6] Choi S., Kim J.S., “A combinatorial proof of a formula for Betti numbers of a stacked polytope”, Electron. J. Comb., 17:1 (2010), Pap. R9 | MR
[7] Choi S., Kim J.S., “Combinatorial rigidity of 3-dimensional simplicial polytopes”, Intern. Math. Res. Not., 2011:8 (2011), 1935–1951 | MR | Zbl
[8] Choi S., Kuroki S., “Topological classification of torus manifolds which have codimension one extended actions”, Alg. and Geom. Topol., 11:5 (2011), 2655–2679, arXiv: 0906.1335v2 [math.AT] | DOI | MR | Zbl
[9] Choi S., Masuda M., Classification of $\mathbb Q$-trivial Bott manifolds, E-print, 2009, arXiv: 0912.5000v1 [math.AT] | MR
[10] Choi S., Masuda M., Oum S., Classification of real Bott manifolds and acyclic digraphs, E-print, 2010, arXiv: 1006.4658v1 [math.AT]
[11] Choi S., Masuda M., Suh D.Y., “Topological classification of generalized Bott towers”, Trans. Amer. Math. Soc., 362:2 (2010), 1097–1112 | DOI | MR | Zbl
[12] Choi S., Masuda M., Suh D.Y., “Quasitoric manifolds over a product of simplices”, Osaka J. Math., 47:1 (2010), 109–129 | MR | Zbl
[13] Choi S., Panov T., Suh D.Y., “Toric cohomological rigidity of simple convex polytopes”, J. London Math. Soc. Ser. 2., 82:2 (2010), 343–360 | DOI | MR | Zbl
[14] Choi S., Park S., Suh D.Y., Topological classification of quasitoric manifolds with the second Betti number 2, E-print, 2010, arXiv: ; Pac. J. Math. (to appear) 1005.5431v1 [math.AT]
[15] Choi S., Suh D.Y., “Properties of Bott manifolds and cohomological rigidity”, Alg. and Geom. Topol., 11:2 (2011), 1053–1076 | DOI | MR | Zbl
[16] Choi S., Suh D.Y., Strong cohomological rigidity of a product of projective spaces, E-print, 2009
[17] Choi Y.T., Cohomological rigidity of simple 3-polytopes with 10 facets, Master Thes., Korea Adv. Inst. Sci. and Technol., Daejeon, 2009
[18] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[19] Delzant T., “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. math. France, 116:3 (1988), 315–339 | MR | Zbl
[20] Dobrinskaya N.E., “Classification problem for quasitoric manifolds over a given simple polytope”, Funct. Anal. and Appl., 35 (2001), 83–89 | DOI | DOI | MR | Zbl
[21] Freedman M.H., “The topology of four-dimensional manifolds”, J. Diff. Geom., 17:3 (1982), 357–453 | MR | Zbl
[22] Friedman R., Morgan J.W., “On the diffeomorphism types of certain algebraic surfaces. I”, J. Diff. Geom., 27:2 (1988), 297–369 | MR | Zbl
[23] Fulton W., Introduction to toric varieties, Ann. Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[24] Hattori A., Masuda M., “Theory of multi-fans”, Osaka J. Math., 40:1 (2003), 1–68 | MR | Zbl
[25] Hochster M., “Cohen–Macaulay rings, combinatorics, and simplicial complexes”, Ring theory II, Proc. 2nd Oklahoma Conf. 1975, eds. B.R. McDonald, R.A. Morris, M. Dekker, New York, 1977, 171–223 | MR
[26] Ishida H., “Symplectic real Bott manifolds”, Proc. Amer. Math. Soc., 139:8 (2011), 3009–3014, arXiv: 1001.3726v1 [math.SG] | DOI | MR | Zbl
[27] Ishida H., “(Filtered) cohomological rigidity of Bott towers”, Osaka J. Math. (to appear) , arXiv: 1006.4932v1 [math.AT] | MR
[28] Ishida H., Fukukawa Y., Masuda M., Topological toric manifolds, E-print, 2010, arXiv: 1012.1786 | MR
[29] Kamishima Y., Masuda M., “Cohomological rigidity of real Bott manifolds”, Alg. and Geom. Topol., 9:4 (2009), 2479–2502 | MR | Zbl
[30] Kleinschmidt P., “A classification of toric varieties with few generators”, Aequat. math., 35 (1988), 254–266 | DOI | MR | Zbl
[31] Kuroki S., “Classification of torus manifolds with codimension one extended actions”, Transform. Groups., 16:2 (2011), 481–536 ; OCAMI Preprint Ser. 09-5 yr 2009 | DOI | MR | Zbl
[32] Masuda M., “Unitary toric manifolds, multi-fans and equivariant index”, Tohoku Math. J., 51:2 (1999), 237–265 | DOI | MR | Zbl
[33] Masuda M., “Cohomological non-rigidity of generalized real Bott manifolds of height 2”, Tr. MIAN, 268, 2010, 252–257 | MR | Zbl
[34] Masuda M., Panov T.E., “Polusvobodnye deistviya okruzhnosti, bashni Botta i kvazitoricheskie mnogoobraziya”, Mat. sb., 199:8 (2008), 95–122 | DOI | MR
[35] Masuda M., Suh D.Y., “Classification problems of toric manifolds via topology”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 273–286 | DOI | MR | Zbl
[36] McDuff D., “The topology of toric symplectic manifolds”, Geom. and Topol., 15:1 (2011), 145–190 | DOI | MR | Zbl
[37] Oda T., Convex bodies and algebraic geometry: An introduction to the theory of toric varieties, Ergebn. Math. Grenzgeb. 3. Flg., 15, Springer, Berlin, 1988 | MR | Zbl
[38] Park S., Suh D.Y., $\mathbb Q$-trivial generalized Bott manifolds, In preparation
[39] Terai N., Hibi T., “Computation of Betti numbers of monomial ideals associated with stacked polytopes”, Manuscr. math., 92:4 (1997), 447–453 | DOI | MR | Zbl