Rigidity problems in toric topology: A~survey
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 188-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several rigidity problems in toric topology are addressed in the survey paper by the second and third authors, “Classification Problems of Toric Manifolds via Topology” (in Toric Topology, Am. Math. Soc., Providence, RI, 2008, pp. 273–286). In the present paper, we survey the results on those problems including recent developments.
@article{TM_2011_275_a11,
     author = {Suyoung Choi and Mikiya Masuda and Dong Youp Suh},
     title = {Rigidity problems in toric topology: {A~survey}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {188--201},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a11/}
}
TY  - JOUR
AU  - Suyoung Choi
AU  - Mikiya Masuda
AU  - Dong Youp Suh
TI  - Rigidity problems in toric topology: A~survey
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 188
EP  - 201
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_275_a11/
LA  - en
ID  - TM_2011_275_a11
ER  - 
%0 Journal Article
%A Suyoung Choi
%A Mikiya Masuda
%A Dong Youp Suh
%T Rigidity problems in toric topology: A~survey
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 188-201
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_275_a11/
%G en
%F TM_2011_275_a11
Suyoung Choi; Mikiya Masuda; Dong Youp Suh. Rigidity problems in toric topology: A~survey. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 188-201. http://geodesic.mathdoc.fr/item/TM_2011_275_a11/

[1] Buchstaber V.M., Panov T.E., Torus actions and their applications in topology and combinatorics, Univ. Lect. Ser., 24, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[2] Cao X., Lü Z., “Cohomological rigidity and the number of homeomorphism types for small covers over prisms”, Topol. and Appl., 158:6 (2011), 813–834, arXiv: 0903.3653v3 [math.GT] | DOI | MR | Zbl

[3] Charlap L.S., “Compact flat Riemannian manifolds. I”, Ann. Math. Ser. 2, 81 (1965), 15–30 | DOI | MR | Zbl

[4] Choi S., Cohomological rigidity for Bott manifolds up to dimension eight, In preparation

[5] Choi S., Torus actions on cohomology generalized Bott manifolds, E-print, 2011, arXiv: 1101.5714v1 [math.AT]

[6] Choi S., Kim J.S., “A combinatorial proof of a formula for Betti numbers of a stacked polytope”, Electron. J. Comb., 17:1 (2010), Pap. R9 | MR

[7] Choi S., Kim J.S., “Combinatorial rigidity of 3-dimensional simplicial polytopes”, Intern. Math. Res. Not., 2011:8 (2011), 1935–1951 | MR | Zbl

[8] Choi S., Kuroki S., “Topological classification of torus manifolds which have codimension one extended actions”, Alg. and Geom. Topol., 11:5 (2011), 2655–2679, arXiv: 0906.1335v2 [math.AT] | DOI | MR | Zbl

[9] Choi S., Masuda M., Classification of $\mathbb Q$-trivial Bott manifolds, E-print, 2009, arXiv: 0912.5000v1 [math.AT] | MR

[10] Choi S., Masuda M., Oum S., Classification of real Bott manifolds and acyclic digraphs, E-print, 2010, arXiv: 1006.4658v1 [math.AT]

[11] Choi S., Masuda M., Suh D.Y., “Topological classification of generalized Bott towers”, Trans. Amer. Math. Soc., 362:2 (2010), 1097–1112 | DOI | MR | Zbl

[12] Choi S., Masuda M., Suh D.Y., “Quasitoric manifolds over a product of simplices”, Osaka J. Math., 47:1 (2010), 109–129 | MR | Zbl

[13] Choi S., Panov T., Suh D.Y., “Toric cohomological rigidity of simple convex polytopes”, J. London Math. Soc. Ser. 2., 82:2 (2010), 343–360 | DOI | MR | Zbl

[14] Choi S., Park S., Suh D.Y., Topological classification of quasitoric manifolds with the second Betti number 2, E-print, 2010, arXiv: ; Pac. J. Math. (to appear) 1005.5431v1 [math.AT]

[15] Choi S., Suh D.Y., “Properties of Bott manifolds and cohomological rigidity”, Alg. and Geom. Topol., 11:2 (2011), 1053–1076 | DOI | MR | Zbl

[16] Choi S., Suh D.Y., Strong cohomological rigidity of a product of projective spaces, E-print, 2009

[17] Choi Y.T., Cohomological rigidity of simple 3-polytopes with 10 facets, Master Thes., Korea Adv. Inst. Sci. and Technol., Daejeon, 2009

[18] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[19] Delzant T., “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. math. France, 116:3 (1988), 315–339 | MR | Zbl

[20] Dobrinskaya N.E., “Classification problem for quasitoric manifolds over a given simple polytope”, Funct. Anal. and Appl., 35 (2001), 83–89 | DOI | DOI | MR | Zbl

[21] Freedman M.H., “The topology of four-dimensional manifolds”, J. Diff. Geom., 17:3 (1982), 357–453 | MR | Zbl

[22] Friedman R., Morgan J.W., “On the diffeomorphism types of certain algebraic surfaces. I”, J. Diff. Geom., 27:2 (1988), 297–369 | MR | Zbl

[23] Fulton W., Introduction to toric varieties, Ann. Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[24] Hattori A., Masuda M., “Theory of multi-fans”, Osaka J. Math., 40:1 (2003), 1–68 | MR | Zbl

[25] Hochster M., “Cohen–Macaulay rings, combinatorics, and simplicial complexes”, Ring theory II, Proc. 2nd Oklahoma Conf. 1975, eds. B.R. McDonald, R.A. Morris, M. Dekker, New York, 1977, 171–223 | MR

[26] Ishida H., “Symplectic real Bott manifolds”, Proc. Amer. Math. Soc., 139:8 (2011), 3009–3014, arXiv: 1001.3726v1 [math.SG] | DOI | MR | Zbl

[27] Ishida H., “(Filtered) cohomological rigidity of Bott towers”, Osaka J. Math. (to appear) , arXiv: 1006.4932v1 [math.AT] | MR

[28] Ishida H., Fukukawa Y., Masuda M., Topological toric manifolds, E-print, 2010, arXiv: 1012.1786 | MR

[29] Kamishima Y., Masuda M., “Cohomological rigidity of real Bott manifolds”, Alg. and Geom. Topol., 9:4 (2009), 2479–2502 | MR | Zbl

[30] Kleinschmidt P., “A classification of toric varieties with few generators”, Aequat. math., 35 (1988), 254–266 | DOI | MR | Zbl

[31] Kuroki S., “Classification of torus manifolds with codimension one extended actions”, Transform. Groups., 16:2 (2011), 481–536 ; OCAMI Preprint Ser. 09-5 yr 2009 | DOI | MR | Zbl

[32] Masuda M., “Unitary toric manifolds, multi-fans and equivariant index”, Tohoku Math. J., 51:2 (1999), 237–265 | DOI | MR | Zbl

[33] Masuda M., “Cohomological non-rigidity of generalized real Bott manifolds of height 2”, Tr. MIAN, 268, 2010, 252–257 | MR | Zbl

[34] Masuda M., Panov T.E., “Polusvobodnye deistviya okruzhnosti, bashni Botta i kvazitoricheskie mnogoobraziya”, Mat. sb., 199:8 (2008), 95–122 | DOI | MR

[35] Masuda M., Suh D.Y., “Classification problems of toric manifolds via topology”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 273–286 | DOI | MR | Zbl

[36] McDuff D., “The topology of toric symplectic manifolds”, Geom. and Topol., 15:1 (2011), 145–190 | DOI | MR | Zbl

[37] Oda T., Convex bodies and algebraic geometry: An introduction to the theory of toric varieties, Ergebn. Math. Grenzgeb. 3. Flg., 15, Springer, Berlin, 1988 | MR | Zbl

[38] Park S., Suh D.Y., $\mathbb Q$-trivial generalized Bott manifolds, In preparation

[39] Terai N., Hibi T., “Computation of Betti numbers of monomial ideals associated with stacked polytopes”, Manuscr. math., 92:4 (1997), 447–453 | DOI | MR | Zbl