Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_275_a10, author = {K\'aroly Bezdek}, title = {The illumination conjecture for spindle convex bodies}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {181--187}, publisher = {mathdoc}, volume = {275}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a10/} }
Károly Bezdek. The illumination conjecture for spindle convex bodies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 181-187. http://geodesic.mathdoc.fr/item/TM_2011_275_a10/
[1] Aigner M., Ziegler G.M., Proofs from The Book, 4th ed., Springer, Berlin, 2010 | MR
[2] Bezdek K., “The illumination conjecture and its extensions”, Period. math. Hung., 53:1–2 (2006), 59–69 | DOI | MR | Zbl
[3] Bezdek K., Lángi Zs., Naszódi M., Papez P., “Ball-polyhedra”, Discr. and Comput. Geom., 38:2 (2007), 201–230 | DOI | MR | Zbl
[4] Bezdek K., Kiss Gy., “On the X-ray number of almost smooth convex bodies and of convex bodies of constant width”, Can. Math. Bull., 52:3 (2009), 342–348 | DOI | MR | Zbl
[5] Boltyanskii V.G., “Zadacha ob osveschenii granitsy vypuklogo tela”, Izv. Mold. fil. AN SSSR, 1960, no. 10, 77–84
[6] Boltyanskii V.G., Gokhberg I.Ts., Razbienie figur na menshie chasti, Nauka, M., 1971
[7] Dekster B.V., “Completeness and constant width in spherical and hyperbolic spaces”, Acta math. Hung., 67:4 (1995), 289–300 | DOI | MR | Zbl
[8] Dekster B.V., “The Jung theorem for spherical and hyperbolic spaces”, Acta math. Hung., 67:4 (1995), 315–331 | DOI | MR | Zbl
[9] Fowler P.W., Tarnai T., “Transition from spherical circle packing to covering: Geometrical analogues of chemical isomerization”, Proc. Roy. Soc. London A, 452 (1996), 2043–2064 | DOI | MR | Zbl
[10] Hadwiger H., “Ungelöste Probleme. Nr. 38”, Elem. Math., 15 (1960), 130–131 | MR
[11] Kahn J., Kalai G., “A counterexample to Borsuk's conjecture”, Bull. Amer. Math. Soc., 29:1 (1993), 60–62 | DOI | MR | Zbl
[12] Lassak M., “Covering the boundary of a convex set by tiles”, Proc. Amer. Math. Soc., 104:1 (1988), 269–272 | DOI | MR | Zbl
[13] Meissner E., “Über Punktmengen konstanter Breite”, Vierteljahresschr. naturforsch. Ges. Zürich, 56 (1911), 42–50 | Zbl
[14] Schramm O., “Illuminating sets of constant width”, Mathematika, 35:2 (1988), 180–189 | DOI | MR | Zbl