The illumination conjecture for spindle convex bodies
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 181-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset of the $d$-dimensional Euclidean space having nonempty interior is called a spindle convex body if it is the intersection of (finitely or infinitely many) congruent $d$-dimensional closed balls. A spindle convex body is called a “fat” one if it contains the centers of its generating balls. The main result of this paper is a proof of the illumination conjecture for “fat” spindle convex bodies in dimensions greater than or equal to 15.
@article{TM_2011_275_a10,
     author = {K\'aroly Bezdek},
     title = {The illumination conjecture for spindle convex bodies},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {181--187},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a10/}
}
TY  - JOUR
AU  - Károly Bezdek
TI  - The illumination conjecture for spindle convex bodies
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 181
EP  - 187
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_275_a10/
LA  - en
ID  - TM_2011_275_a10
ER  - 
%0 Journal Article
%A Károly Bezdek
%T The illumination conjecture for spindle convex bodies
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 181-187
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_275_a10/
%G en
%F TM_2011_275_a10
Károly Bezdek. The illumination conjecture for spindle convex bodies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 181-187. http://geodesic.mathdoc.fr/item/TM_2011_275_a10/

[1] Aigner M., Ziegler G.M., Proofs from The Book, 4th ed., Springer, Berlin, 2010 | MR

[2] Bezdek K., “The illumination conjecture and its extensions”, Period. math. Hung., 53:1–2 (2006), 59–69 | DOI | MR | Zbl

[3] Bezdek K., Lángi Zs., Naszódi M., Papez P., “Ball-polyhedra”, Discr. and Comput. Geom., 38:2 (2007), 201–230 | DOI | MR | Zbl

[4] Bezdek K., Kiss Gy., “On the X-ray number of almost smooth convex bodies and of convex bodies of constant width”, Can. Math. Bull., 52:3 (2009), 342–348 | DOI | MR | Zbl

[5] Boltyanskii V.G., “Zadacha ob osveschenii granitsy vypuklogo tela”, Izv. Mold. fil. AN SSSR, 1960, no. 10, 77–84

[6] Boltyanskii V.G., Gokhberg I.Ts., Razbienie figur na menshie chasti, Nauka, M., 1971

[7] Dekster B.V., “Completeness and constant width in spherical and hyperbolic spaces”, Acta math. Hung., 67:4 (1995), 289–300 | DOI | MR | Zbl

[8] Dekster B.V., “The Jung theorem for spherical and hyperbolic spaces”, Acta math. Hung., 67:4 (1995), 315–331 | DOI | MR | Zbl

[9] Fowler P.W., Tarnai T., “Transition from spherical circle packing to covering: Geometrical analogues of chemical isomerization”, Proc. Roy. Soc. London A, 452 (1996), 2043–2064 | DOI | MR | Zbl

[10] Hadwiger H., “Ungelöste Probleme. Nr. 38”, Elem. Math., 15 (1960), 130–131 | MR

[11] Kahn J., Kalai G., “A counterexample to Borsuk's conjecture”, Bull. Amer. Math. Soc., 29:1 (1993), 60–62 | DOI | MR | Zbl

[12] Lassak M., “Covering the boundary of a convex set by tiles”, Proc. Amer. Math. Soc., 104:1 (1988), 269–272 | DOI | MR | Zbl

[13] Meissner E., “Über Punktmengen konstanter Breite”, Vierteljahresschr. naturforsch. Ges. Zürich, 56 (1911), 42–50 | Zbl

[14] Schramm O., “Illuminating sets of constant width”, Mathematika, 35:2 (1988), 180–189 | DOI | MR | Zbl