Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_274_a8, author = {Aldo de Luca}, title = {A palindromization map on free monoids}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {137--147}, publisher = {mathdoc}, volume = {274}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2011_274_a8/} }
Aldo de Luca. A palindromization map on free monoids. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 137-147. http://geodesic.mathdoc.fr/item/TM_2011_274_a8/
[1] Arnoux P., Rauzy G., “Représentation géométrique de suites de complexité $2n+1$”, Bull. Soc. math. France, 119 (1991), 199–215 | MR | Zbl
[2] Berstel J., “Sturmian and episturmian words (a survey of some recent results)”, Algebraic informatics, Proc. 2nd Intern. Conf. CAI 2007, Lect. Notes Comput. Sci., 4728, Springer, Berlin, 2007, 23–47 | DOI | MR | Zbl
[3] Berstel J., de Luca A., “Sturmian words, Lyndon words and trees”, Theor. Comput. Sci., 178 (1997), 171–203 | DOI | MR | Zbl
[4] Berthé V., de Luca A., Reutenauer C., “On an involution of Christoffel words and Sturmian morphisms”, Eur. J. Comb., 29 (2008), 535–553 | DOI | MR | Zbl
[5] Bucci M., de Luca A., De Luca A., “On the number of episturmian palindromes”, Theor. Comput. Sci., 411 (2010), 3668–3684 | DOI | MR | Zbl
[6] Bucci M., de Luca A., De Luca A., Zamboni L.Q., “On some problems related to palindrome closure”, Theor. Inform. and Appl., 42 (2008), 679–700 | DOI | MR | Zbl
[7] Bucci M., de Luca A., De Luca A., Zamboni L.Q., “On different generalizations of episturmian words”, Theor. Comput. Sci., 393 (2008), 23–36 | DOI | MR | Zbl
[8] Christoffel E.B., “Observatio arithmetica”, Ann. Mat. Pura e Appl., 6 (1875), 148–152
[9] de Luca A., “Sturmian words: Structure, combinatorics, and their arithmetics”, Theor. Comput. Sci., 183 (1997), 45–82 | DOI | MR | Zbl
[10] de Luca A., “Standard Sturmian morphisms”, Theor. Comput. Sci., 178 (1997), 205–224 | DOI | MR | Zbl
[11] de Luca A., “A standard correspondence on epicentral words”, Eur. J. Comb. (to appear)
[12] de Luca A., De Luca A., “Pseudopalindrome closure operators in free monoids”, Theor. Comput. Sci., 362 (2006), 282–300 | DOI | MR | Zbl
[13] de Luca A., Mignosi F., “Some combinatorial properties of Sturmian words”, Theor. Comput. Sci., 136 (1994), 361–385 | DOI | MR | Zbl
[14] de Luca A., Zamboni L.Q., “On graphs of central episturmian words”, Theor. Comput. Sci., 411 (2010), 70–90 | DOI | MR | Zbl
[15] de Luca A., Zamboni L.Q., “Involutions of epicentral words”, Eur. J. Comb., 31 (2010), 867–886 | DOI | MR | Zbl
[16] Droubay X., Justin J., Pirillo G., “Episturmian words and some constructions of de Luca and Rauzy”, Theor. Comput. Sci., 255 (2001), 539–553 | DOI | MR | Zbl
[17] Fine N.J., Wilf H.S., “Uniqueness theorems for periodic functions”, Proc. Amer. Math. Soc., 16 (1965), 109–114 | DOI | MR | Zbl
[18] Glen A., Justin J., “Episturmian words: A survey”, Theor. Inform. and Appl., 43 (2009), 403–442 | DOI | MR | Zbl
[19] Jamet D., Paquin G., Richomme G., Vuillon L., “On the fixed points of the iterated pseudopalindromic closure operator”, Theor. Comput. Sci., 412 (2011), 2974–2987 | DOI | MR | Zbl
[20] Justin J., “On a paper by Castelli, Mignosi, Restivo”, Theor. Inform. and Appl., 34 (2000), 373–377 | DOI | MR | Zbl
[21] Justin J., “Episturmian morphisms and a Galois theorem on continued fractions”, Theor. Inform. and Appl., 39 (2005), 207–215 | DOI | MR | Zbl
[22] Justin J., Pirillo G., “Episturmian words and episturmian morphisms”, Theor. Comput. Sci., 276 (2002), 281–313 | DOI | MR | Zbl
[23] Kassel C., Reutenauer C., “A palindromization map for the free group”, Theor. Comput. Sci., 409 (2008), 461–470 | DOI | MR | Zbl
[24] Lothaire M., Algebraic combinatorics on words, Encycl. Math. and Its Appl., 90, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[25] Mignosi F., Zamboni L.Q., “On the number of Arnoux–Rauzy words”, Acta arith., 101 (2002), 121–129 | DOI | MR | Zbl
[26] Tijdeman R., Zamboni L.Q., “Fine and Wilf words for any periods”, Indag. Math. New Ser., 14 (2003), 135–147 | DOI | MR | Zbl
[27] Tijdeman R., Zamboni L.Q., “Fine and Wilf words for any periods. II”, Theor. Comput. Sci., 410 (2009), 3027–3034 | DOI | MR | Zbl