A palindromization map on free monoids
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 137-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey of several results of combinatorial nature which have been obtained starting from a palindromization map on a free monoid $A^*$ introduced by the author in 1997 in the case of a binary alphabet and, successively, generalized by other authors for arbitrary finite alphabets. If one extends the action of the palindromization map to infinite words, one can generate the class of all standard episturmian words, which includes standard Sturmian words and Arnoux–Rauzy words. In this framework, an essential role is played by the class of palindromic prefixes of all standard episturmian words called epicentral words. These words are precisely the images of $A^*$ under the palindromization map. Epicentral words have several different representations and satisfy interesting combinatorial properties. A further extension of the palindromization map to a $\vartheta$-palindromization map, where $\vartheta$ is an arbitrary involutory antimorphism of $A^*$, is also briefly discussed.
@article{TM_2011_274_a8,
     author = {Aldo de Luca},
     title = {A palindromization map on free monoids},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {137--147},
     publisher = {mathdoc},
     volume = {274},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_274_a8/}
}
TY  - JOUR
AU  - Aldo de Luca
TI  - A palindromization map on free monoids
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 137
EP  - 147
VL  - 274
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_274_a8/
LA  - en
ID  - TM_2011_274_a8
ER  - 
%0 Journal Article
%A Aldo de Luca
%T A palindromization map on free monoids
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 137-147
%V 274
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_274_a8/
%G en
%F TM_2011_274_a8
Aldo de Luca. A palindromization map on free monoids. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 137-147. http://geodesic.mathdoc.fr/item/TM_2011_274_a8/

[1] Arnoux P., Rauzy G., “Représentation géométrique de suites de complexité $2n+1$”, Bull. Soc. math. France, 119 (1991), 199–215 | MR | Zbl

[2] Berstel J., “Sturmian and episturmian words (a survey of some recent results)”, Algebraic informatics, Proc. 2nd Intern. Conf. CAI 2007, Lect. Notes Comput. Sci., 4728, Springer, Berlin, 2007, 23–47 | DOI | MR | Zbl

[3] Berstel J., de Luca A., “Sturmian words, Lyndon words and trees”, Theor. Comput. Sci., 178 (1997), 171–203 | DOI | MR | Zbl

[4] Berthé V., de Luca A., Reutenauer C., “On an involution of Christoffel words and Sturmian morphisms”, Eur. J. Comb., 29 (2008), 535–553 | DOI | MR | Zbl

[5] Bucci M., de Luca A., De Luca A., “On the number of episturmian palindromes”, Theor. Comput. Sci., 411 (2010), 3668–3684 | DOI | MR | Zbl

[6] Bucci M., de Luca A., De Luca A., Zamboni L.Q., “On some problems related to palindrome closure”, Theor. Inform. and Appl., 42 (2008), 679–700 | DOI | MR | Zbl

[7] Bucci M., de Luca A., De Luca A., Zamboni L.Q., “On different generalizations of episturmian words”, Theor. Comput. Sci., 393 (2008), 23–36 | DOI | MR | Zbl

[8] Christoffel E.B., “Observatio arithmetica”, Ann. Mat. Pura e Appl., 6 (1875), 148–152

[9] de Luca A., “Sturmian words: Structure, combinatorics, and their arithmetics”, Theor. Comput. Sci., 183 (1997), 45–82 | DOI | MR | Zbl

[10] de Luca A., “Standard Sturmian morphisms”, Theor. Comput. Sci., 178 (1997), 205–224 | DOI | MR | Zbl

[11] de Luca A., “A standard correspondence on epicentral words”, Eur. J. Comb. (to appear)

[12] de Luca A., De Luca A., “Pseudopalindrome closure operators in free monoids”, Theor. Comput. Sci., 362 (2006), 282–300 | DOI | MR | Zbl

[13] de Luca A., Mignosi F., “Some combinatorial properties of Sturmian words”, Theor. Comput. Sci., 136 (1994), 361–385 | DOI | MR | Zbl

[14] de Luca A., Zamboni L.Q., “On graphs of central episturmian words”, Theor. Comput. Sci., 411 (2010), 70–90 | DOI | MR | Zbl

[15] de Luca A., Zamboni L.Q., “Involutions of epicentral words”, Eur. J. Comb., 31 (2010), 867–886 | DOI | MR | Zbl

[16] Droubay X., Justin J., Pirillo G., “Episturmian words and some constructions of de Luca and Rauzy”, Theor. Comput. Sci., 255 (2001), 539–553 | DOI | MR | Zbl

[17] Fine N.J., Wilf H.S., “Uniqueness theorems for periodic functions”, Proc. Amer. Math. Soc., 16 (1965), 109–114 | DOI | MR | Zbl

[18] Glen A., Justin J., “Episturmian words: A survey”, Theor. Inform. and Appl., 43 (2009), 403–442 | DOI | MR | Zbl

[19] Jamet D., Paquin G., Richomme G., Vuillon L., “On the fixed points of the iterated pseudopalindromic closure operator”, Theor. Comput. Sci., 412 (2011), 2974–2987 | DOI | MR | Zbl

[20] Justin J., “On a paper by Castelli, Mignosi, Restivo”, Theor. Inform. and Appl., 34 (2000), 373–377 | DOI | MR | Zbl

[21] Justin J., “Episturmian morphisms and a Galois theorem on continued fractions”, Theor. Inform. and Appl., 39 (2005), 207–215 | DOI | MR | Zbl

[22] Justin J., Pirillo G., “Episturmian words and episturmian morphisms”, Theor. Comput. Sci., 276 (2002), 281–313 | DOI | MR | Zbl

[23] Kassel C., Reutenauer C., “A palindromization map for the free group”, Theor. Comput. Sci., 409 (2008), 461–470 | DOI | MR | Zbl

[24] Lothaire M., Algebraic combinatorics on words, Encycl. Math. and Its Appl., 90, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[25] Mignosi F., Zamboni L.Q., “On the number of Arnoux–Rauzy words”, Acta arith., 101 (2002), 121–129 | DOI | MR | Zbl

[26] Tijdeman R., Zamboni L.Q., “Fine and Wilf words for any periods”, Indag. Math. New Ser., 14 (2003), 135–147 | DOI | MR | Zbl

[27] Tijdeman R., Zamboni L.Q., “Fine and Wilf words for any periods. II”, Theor. Comput. Sci., 410 (2009), 3027–3034 | DOI | MR | Zbl