Degrees of autostability relative to strong constructivizations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 119-129

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectra of the Turing degrees of autostability of computable models are studied. For almost prime decidable models, it is shown that the autostability spectrum relative to strong constructivizations of such models always contains a certain recursively enumerable Turing degree; moreover, it is shown that for any recursively enumerable Turing degree, there exist prime models in which this degree is the least one in the autostability spectrum relative to strong constructivizations.
@article{TM_2011_274_a6,
     author = {S. S. Goncharov},
     title = {Degrees of autostability relative to strong constructivizations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {119--129},
     publisher = {mathdoc},
     volume = {274},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_274_a6/}
}
TY  - JOUR
AU  - S. S. Goncharov
TI  - Degrees of autostability relative to strong constructivizations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 119
EP  - 129
VL  - 274
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_274_a6/
LA  - ru
ID  - TM_2011_274_a6
ER  - 
%0 Journal Article
%A S. S. Goncharov
%T Degrees of autostability relative to strong constructivizations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 119-129
%V 274
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_274_a6/
%G ru
%F TM_2011_274_a6
S. S. Goncharov. Degrees of autostability relative to strong constructivizations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 119-129. http://geodesic.mathdoc.fr/item/TM_2011_274_a6/