On joint conditional complexity (entropy)
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 103-118

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditional Kolmogorov complexity of a word $a$ relative to a word $b$ is the minimum length of a program that prints $a$ given $b$ as an input. We generalize this notion to quadruples of strings $a,b,c,d$: their joint conditional complexity $K((a\to c)\land(b\to d))$ is defined as the minimum length of a program that transforms $a$ into $c$ and transforms $b$ into $d$. In this paper, we prove that the joint conditional complexity cannot be expressed in terms of the usual conditional (and unconditional) Kolmogorov complexity. This result provides a negative answer to the following question asked by A. Shen on a session of the Kolmogorov seminar at Moscow State University in 1994: Is there a problem of information processing whose complexity is not expressible in terms of the conditional (and unconditional) Kolmogorov complexity? We show that a similar result holds for the classical Shannon entropy. We provide two proofs of both results, an effective one and a “quasi-effective” one. Finally, we present a quasi-effective proof of a strong version of the following statement: there are two strings whose mutual information cannot be extracted. Previously, only a noneffective proof of that statement has been known.
@article{TM_2011_274_a5,
     author = {Nikolay K. Vereshchagin and Andrej A. Muchnik},
     title = {On joint conditional complexity (entropy)},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {103--118},
     publisher = {mathdoc},
     volume = {274},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_274_a5/}
}
TY  - JOUR
AU  - Nikolay K. Vereshchagin
AU  - Andrej A. Muchnik
TI  - On joint conditional complexity (entropy)
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 103
EP  - 118
VL  - 274
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_274_a5/
LA  - ru
ID  - TM_2011_274_a5
ER  - 
%0 Journal Article
%A Nikolay K. Vereshchagin
%A Andrej A. Muchnik
%T On joint conditional complexity (entropy)
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 103-118
%V 274
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_274_a5/
%G ru
%F TM_2011_274_a5
Nikolay K. Vereshchagin; Andrej A. Muchnik. On joint conditional complexity (entropy). Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 103-118. http://geodesic.mathdoc.fr/item/TM_2011_274_a5/