Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_274_a4, author = {Laurent Bienvenu and Peter G\'acs and Mathieu Hoyrup and Cristobal Rojas and Alexander Shen}, title = {Algorithmic tests and randomness with respect to a~class of measures}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {41--102}, publisher = {mathdoc}, volume = {274}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2011_274_a4/} }
TY - JOUR AU - Laurent Bienvenu AU - Peter Gács AU - Mathieu Hoyrup AU - Cristobal Rojas AU - Alexander Shen TI - Algorithmic tests and randomness with respect to a~class of measures JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 41 EP - 102 VL - 274 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2011_274_a4/ LA - ru ID - TM_2011_274_a4 ER -
%0 Journal Article %A Laurent Bienvenu %A Peter Gács %A Mathieu Hoyrup %A Cristobal Rojas %A Alexander Shen %T Algorithmic tests and randomness with respect to a~class of measures %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2011 %P 41-102 %V 274 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2011_274_a4/ %G ru %F TM_2011_274_a4
Laurent Bienvenu; Peter Gács; Mathieu Hoyrup; Cristobal Rojas; Alexander Shen. Algorithmic tests and randomness with respect to a~class of measures. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 41-102. http://geodesic.mathdoc.fr/item/TM_2011_274_a4/
[1] Avigad J., Gerhardy P., Towsner H., “Local stability of ergodic averages”, Trans. Amer. Math. Soc., 362:1 (2010), 261–288 | DOI | MR | Zbl
[2] Bienvenu L., Day A., Hoyrup M., Mezhirov I., Shen A., A constructive version of Birkhoff's ergodic theorem for Martin-Löf random points, E-print, 2010, arXiv: 1007.5249 [math.DS]
[3] Bienvenu L., Romashchenko A., Shen A., “Sparse sets”, Journées automates cellulaires, Proc. First Symp. on Cellular Automata, Uzès (France), 2008, 18–28 http://hal.archives-ouvertes.fr/docs/00/27/40/10/PDF/18-28.pdf
[4] Chaitin G.J., “A theory of program size formally identical to information theory”, J. ACM, 22 (1975), 329–340 | DOI | MR | Zbl
[5] Chernov A., Shen A., Vereshchagin N., Vovk V., “On-line probability, complexity and randomness”, Algorithmic learning theory, Proc. 19th Intern. Conf., Budapest, 2008, Lect. Notes Comput. Sci., 5254, eds. Y. Freund, L. Györfi, G. Turán, T. Zeugmann, Springer, Berlin, 2008, 138–153 | DOI | MR | Zbl
[6] Day A.R., Miller J.S., “Randomness for non-computable measures”, Trans. Amer. Math. Soc. (to appear) http://www.math.wisc.edu/~jmiller/Papers/neutral.pdf | MR
[7] Gács P., Lecture notes on descriptional complexity and randomness, Tech. Rep., Boston Univ., Comput. Sci. Dept., Boston, MA, 1988 http://www.cs.bu.edu/~gacs/papers/ait-notes.pdf
[8] Gács P., Komplexität und Zufälligkeit, PhD Thesis, J.W. Goethe Univ., Frankfurt, 1978 | Zbl
[9] Gács P., “Exact expressions for some randomness tests”, Ztschr. Math. Logik und Grundlagen Math., 26 (1980), 385–394 ; Theoretical Computer Science, Proc. 4th GI Conf., Lect. Notes Comput. Sci., 67, Springer, Berlin, 1979, 124–131 | DOI | MR | Zbl | DOI | MR
[10] Gács P., “On the relation between descriptional complexity and algorithmic probability”, Theor. Comput. Sci., 22 (1983), 71–93 ; Proc. 22nd Annu. Symp. on Foundations of Computer Science, Nashville, 1981, IEEE Comput. Soc., New York, 1981, 296–303 | DOI | MR | Zbl
[11] Gács P., “Uniform test of algorithmic randomness over a general space”, Theor. Comput. Sci., 341:1–3 (2005), 91–137 | DOI | MR | Zbl
[12] Hoyrup M., Rojas C., “An application of Martin-Löf randomness to effective probability theory”, Mathematical theory and computational practice, Proc. Conf. CiE 2009, Lect. Notes Comput. Sci., 5635, Springer, Berlin, 2009, 260–269 | DOI | MR | Zbl
[13] Hoyrup M., Rojas C., “Computability of probability measures and Martin-Löf randomness over metric spaces”, Inf. and Comput., 207:7 (2009), 830–847 | DOI | MR | Zbl
[14] Kolmogorov A.N., “K logicheskim osnovam teorii informatsii i teorii veroyatnostei”, Probl. peredachi inform., 5:3 (1969), 3–7 ; Kolmogorov A.N., “Logical basis for information theory and probability theory”, IEEE Trans. Inf. Theory, 14:5 (1968), 662–664 | MR | Zbl | DOI | MR | Zbl
[15] Kuratowski K., Topology, V. 1, 2., Acad. Press, New York, 1966, 1968 ; Куратовский К., Топология, Т. 1, 2., Мир, М., 1966, 1969 | MR | Zbl
[16] Levin L.A., “O ponyatii sluchainoi posledovatelnosti”, DAN SSSR, 212:3 (1973), 548–550 | Zbl
[17] Levin L.A., “Ravnomernye testy sluchainosti”, DAN SSSR, 227:1 (1976), 33–35 | MR | Zbl
[18] Levin L.A., “Randomness conservation inequalities: Information and independence in mathematical theories”, Inf. and Control., 61:1 (1984), 15–37 | DOI | MR | Zbl
[19] Li M., Vitányi P., An introduction to Kolmogorov complexity and its applications, 3rd ed., Springer, New York, 2008 | MR | Zbl
[20] Martin-Löf P., “The definition of random sequences”, Inf. and Control., 9 (1966), 602–619 | DOI | MR | Zbl
[21] Medvedev Yu.T., “Stepeni trudnosti massovykh problem”, DAN SSSR, 104:4 (1955), 501–504 | MR | Zbl
[22] Miller J.S., “Degrees of unsolvability of continuous functions”, J. Symb. Log., 69:2 (2004), 555–584 | DOI | MR | Zbl
[23] Schnorr C.P., “Process complexity and effective random tests”, J. Comput. Syst. Sci., 7:4 (1973), 376–388 ; Proc. 4th Annu. ACM Symp. on Theory of Computing, Denver, 1972, ACM, New York, 1972, 168–176 | DOI | MR | Zbl | Zbl
[24] Shafer G., Shen A., Vereshchagin N., Vovk V., Test martingales, Bayes factors, and $p$-values, E-print, 2009, arXiv: 0912.4269v2 [math.ST] | MR
[25] Shafer G., Vovk V., Probability and finance: It's only a game!, Wiley, Chichester, 2001 | MR | Zbl
[26] Shen A., Algorithmic information theory and Kolmogorov complexity, Tech. Rep. 2000-034, Uppsala Univ., Uppsala, 2000 http://www.it.uu.se/research/publications/reports/2000-034/
[27] Vovk V., Shen A., “Prequential randomness and probability”, Theor. Comput. Sci., 411:29–30 (2010), 2632–2646 | DOI | MR | Zbl
[28] Strassen V., “The existence of probability measures with given marginals”, Ann. Math. Stat., 36 (1965), 423–439 | DOI | MR | Zbl
[29] V'yugin V.V., “Ergodic theorems for individual random sequences”, Theor. Comput. Sci., 207:2 (1998), 343–361 | DOI | MR | Zbl
[30] Zvonkin A.K., Levin L.A., “Slozhnost konechnykh ob'ektov i obosnovanie ponyatii informatsii i sluchainosti s pomoschyu teorii algoritmov”, UMN., 25:6 (1970), 85–127 | MR | Zbl