@article{TM_2011_274_a3,
author = {L. D. Beklemishev},
title = {A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {32--40},
year = {2011},
volume = {274},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2011_274_a3/}
}
TY - JOUR
AU - L. D. Beklemishev
TI - A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$
JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY - 2011
SP - 32
EP - 40
VL - 274
UR - http://geodesic.mathdoc.fr/item/TM_2011_274_a3/
LA - ru
ID - TM_2011_274_a3
ER -
L. D. Beklemishev. A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 32-40. http://geodesic.mathdoc.fr/item/TM_2011_274_a3/
[1] Beklemishev L.D., “Skhemy refleksii i algebry dokazuemosti v formalnoi arifmetike”, UMN, 60:2 (2005), 3–78 | DOI | MR | Zbl
[2] Beklemishev L.D., “Kripke semantics for provability logic GLP”, Ann. Pure and Appl. Logic, 161 (2010), 756–774 ; Logic Group Preprint Ser., 260, Univ. Utrecht, Oct. 2007 http://www.phil.uu.nl/preprints/preprints/PREPRINTS/preprint260.pdf | DOI | MR | Zbl
[3] Boolos G., The logic of provability, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[4] Ignatiev K.N., “On strong provability predicates and the associated modal logics”, J. Symb. Log., 58 (1993), 249–290 | DOI | MR | Zbl
[5] Dzhaparidze G.K., Modalno-logicheskie sredstva issledovaniya dokazuemosti, Dis. ... kand. filos. nauk, MGU, M., 1986.
[6] Smorinskii K., “Teoremy o nepolnote”, Spravochnaya kniga po matematicheskoi logike. Ch. 4: Teoriya dokazatelstv i konstruktivnaya matematika, Pod red. Dzh. Barvaisa, Nauka, M., 1983, 9–53
[7] Solovay R.M., “Provability interpretations of modal logic”, Isr. J. Math., 25 (1976), 287–304 | DOI | MR | Zbl