A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 32-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a simplified proof of Japaridze's arithmetical completeness theorem for the well-known polymodal provability logic $\mathbf{GLP}$. The simplification is achieved by employing a fragment $\mathbf J$ of $\mathbf{GLP}$ that enjoys a more convenient Kripke-style semantics than the logic considered in the papers by Ignatiev and Boolos. In particular, this allows us to simplify the arithmetical fixed point construction and to bring it closer to the standard construction due to Solovay.
@article{TM_2011_274_a3,
     author = {L. D. Beklemishev},
     title = {A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {32--40},
     publisher = {mathdoc},
     volume = {274},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_274_a3/}
}
TY  - JOUR
AU  - L. D. Beklemishev
TI  - A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 32
EP  - 40
VL  - 274
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_274_a3/
LA  - ru
ID  - TM_2011_274_a3
ER  - 
%0 Journal Article
%A L. D. Beklemishev
%T A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 32-40
%V 274
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_274_a3/
%G ru
%F TM_2011_274_a3
L. D. Beklemishev. A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 32-40. http://geodesic.mathdoc.fr/item/TM_2011_274_a3/

[1] Beklemishev L.D., “Skhemy refleksii i algebry dokazuemosti v formalnoi arifmetike”, UMN, 60:2 (2005), 3–78 | DOI | MR | Zbl

[2] Beklemishev L.D., “Kripke semantics for provability logic GLP”, Ann. Pure and Appl. Logic, 161 (2010), 756–774 ; Logic Group Preprint Ser., 260, Univ. Utrecht, Oct. 2007 http://www.phil.uu.nl/preprints/preprints/PREPRINTS/preprint260.pdf | DOI | MR | Zbl

[3] Boolos G., The logic of provability, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[4] Ignatiev K.N., “On strong provability predicates and the associated modal logics”, J. Symb. Log., 58 (1993), 249–290 | DOI | MR | Zbl

[5] Dzhaparidze G.K., Modalno-logicheskie sredstva issledovaniya dokazuemosti, Dis. ... kand. filos. nauk, MGU, M., 1986.

[6] Smorinskii K., “Teoremy o nepolnote”, Spravochnaya kniga po matematicheskoi logike. Ch. 4: Teoriya dokazatelstv i konstruktivnaya matematika, Pod red. Dzh. Barvaisa, Nauka, M., 1983, 9–53

[7] Solovay R.M., “Provability interpretations of modal logic”, Isr. J. Math., 25 (1976), 287–304 | DOI | MR | Zbl