Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_274_a3, author = {L. D. Beklemishev}, title = {A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {32--40}, publisher = {mathdoc}, volume = {274}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2011_274_a3/} }
TY - JOUR AU - L. D. Beklemishev TI - A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 32 EP - 40 VL - 274 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2011_274_a3/ LA - ru ID - TM_2011_274_a3 ER -
%0 Journal Article %A L. D. Beklemishev %T A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2011 %P 32-40 %V 274 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2011_274_a3/ %G ru %F TM_2011_274_a3
L. D. Beklemishev. A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 32-40. http://geodesic.mathdoc.fr/item/TM_2011_274_a3/
[1] Beklemishev L.D., “Skhemy refleksii i algebry dokazuemosti v formalnoi arifmetike”, UMN, 60:2 (2005), 3–78 | DOI | MR | Zbl
[2] Beklemishev L.D., “Kripke semantics for provability logic GLP”, Ann. Pure and Appl. Logic, 161 (2010), 756–774 ; Logic Group Preprint Ser., 260, Univ. Utrecht, Oct. 2007 http://www.phil.uu.nl/preprints/preprints/PREPRINTS/preprint260.pdf | DOI | MR | Zbl
[3] Boolos G., The logic of provability, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[4] Ignatiev K.N., “On strong provability predicates and the associated modal logics”, J. Symb. Log., 58 (1993), 249–290 | DOI | MR | Zbl
[5] Dzhaparidze G.K., Modalno-logicheskie sredstva issledovaniya dokazuemosti, Dis. ... kand. filos. nauk, MGU, M., 1986.
[6] Smorinskii K., “Teoremy o nepolnote”, Spravochnaya kniga po matematicheskoi logike. Ch. 4: Teoriya dokazatelstv i konstruktivnaya matematika, Pod red. Dzh. Barvaisa, Nauka, M., 1983, 9–53
[7] Solovay R.M., “Provability interpretations of modal logic”, Isr. J. Math., 25 (1976), 287–304 | DOI | MR | Zbl