On normal subgroups in the periodic products of S.\,I.~Adian
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 15-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a given group $G$ is called a hereditarily factorizable subgroup (HF subgroup) if each congruence on $H$ can be extended to some congruence on the entire group $G$. An arbitrary group $G_1$ is an HF subgroup of the direct product $G_1\times G_2$, as well as of the free product $G_1*G_2$ of groups $G_1$ and $G_2$. In this paper a necessary and sufficient condition is obtained for a factor $G_i$ of Adian's $n$-periodic product $\prod_{i\in I}^nG_i$ of an arbitrary family of groups $\{G_i\}_{i\in I}$ to be an HF subgroup. We also prove that for each odd $n\geq1003$ any noncyclic subgroup of the free Burnside group $B(m,n)$ contains an HF subgroup isomorphic to the group $B(\infty,n)$ of infinite rank. This strengthens the recent results of A. Yu. Ol'shanskii and M. Sapir, D. Sonkin, and S. Ivanov on HF subgroups of free Burnside groups. This result implies, in particular, that each (noncyclic) subgroup of the group $B(m,n)$ is $SQ$-universal in the class of all groups of period $n$. Moreover, it turns out that any countable group of period $n$ is embedded in some $2$-generated group of period $n$, which strengthens the previously obtained result of V. Obraztsov. At the end of the paper we prove that the group $B(m,n)$ is distinguished as a direct factor in any $n$-periodic group in which it is contained as a normal subgroup.
@article{TM_2011_274_a2,
     author = {V. S. Atabekyan},
     title = {On normal subgroups in the periodic products of {S.\,I.~Adian}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {15--31},
     publisher = {mathdoc},
     volume = {274},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_274_a2/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - On normal subgroups in the periodic products of S.\,I.~Adian
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 15
EP  - 31
VL  - 274
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_274_a2/
LA  - ru
ID  - TM_2011_274_a2
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T On normal subgroups in the periodic products of S.\,I.~Adian
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 15-31
%V 274
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_274_a2/
%G ru
%F TM_2011_274_a2
V. S. Atabekyan. On normal subgroups in the periodic products of S.\,I.~Adian. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 15-31. http://geodesic.mathdoc.fr/item/TM_2011_274_a2/

[1] Adyan S.I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[2] Novikov P.S., Adyan S.I., “O beskonechnykh periodicheskikh gruppakh. I, II, III”, Izv. AN SSSR. Ser. mat., 32 (1968), 212–244 | Zbl

[3] Adyan S.I., “Normalnye podgruppy svobodnykh periodicheskikh grupp”, Izv. AN SSSR. Ser. mat., 45:5 (1981), 931–947 | MR | Zbl

[4] Adyan S.I., “Sluchainye bluzhdaniya na svobodnykh periodicheskikh gruppakh”, Izv. AN SSSR. Ser. mat., 46:6 (1982), 1139–1149 | MR | Zbl

[5] Novikov P.S., Adyan S.I., “Opredelyayuschie sootnosheniya i problema tozhdestva dlya svobodnykh periodicheskikh grupp nechetnogo poryadka”, Izv. AN SSSR. Ser. mat., 32:4 (1968), 971–979 | Zbl

[6] Novikov P.S., Adyan S.I., “O kommutativnykh podgruppakh i probleme sopryazhennosti v svobodnykh periodicheskikh gruppakh nechetnogo poryadka”, Izv. AN SSSR. Ser. mat., 32:5 (1968), 1176–1190 | Zbl

[7] Adyan S.I., “O podgruppakh svobodnykh periodicheskikh grupp nechetnogo pokazatelya”, Tr. MIAN, 112, 1971, 64–72 | Zbl

[8] Adyan S.I., “Aksiomaticheskii metod postroeniya grupp s zadannymi svoistvami”, UMN, 32:1 (1977), 3–15 | MR | Zbl

[9] Adyan S.I., “Issledovaniya po probleme Bernsaida i svyazannym s nei voprosam”, Tr. MIAN, 168, 1984, 171–196 | MR | Zbl

[10] Adyan S.I., “Problema Bernsaida o periodicheskikh gruppakh i smezhnye voprosy”, Sovr. probl. matematiki, 1 (2003), 5–28 | DOI | MR

[11] Adyan S.I., “Beskonechnye neprivodimye sistemy gruppovykh tozhdestv”, Izv. AN SSSR. Ser. mat., 34:4 (1970), 715–734 | Zbl

[12] Adyan S.I., “O nekotorykh gruppakh bez krucheniya”, Izv. AN SSSR. Ser. mat., 35:3 (1971), 459–468 | Zbl

[13] Adyan S.I., “Periodicheskie proizvedeniya grupp”, Tr. MIAN, 142, 1976, 3–21 | MR | Zbl

[14] Adyan S.I., “Esche raz o periodicheskikh proizvedeniyakh grupp i probleme A.I. Maltseva”, Mat. zametki, 88:6 (2010), 803–810 | DOI | MR | Zbl

[15] Olshanskii A.Yu., “Problema A.I. Maltseva ob operatsiyakh nad gruppami”, Tr. sem. im. I.G. Petrovskogo, 14, 1989, 225–249 | MR

[16] Ivanov S.V., “On periodic products of groups”, Intern. J. Algebra and Comput., 5:1 (1995), 7–17 | DOI | MR | Zbl

[17] Adyan S.I., “O prostote periodicheskikh proizvedenii grupp”, DAN SSSR, 241:4 (1978), 745–748 | MR | Zbl

[18] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969 | MR

[19] Adyan S.I., Lysënok I.G., “O gruppakh, vse sobstvennye podgruppy kotorykh konechnye tsiklicheskie”, Izv. AN SSSR. Ser. mat., 55:5 (1991), 933–990 | Zbl

[20] Olshanskii A.Yu., “Gruppy ogranichennogo perioda s podgruppami prostogo poryadka”, Algebra i logika, 21:5 (1982), 553–618 | MR

[21] Atabekyan V.S., Ivanov S.V., Dva zamechaniya o gruppakh ogranichennogo perioda, Dep. v VINITI, No2243-V87, M., 1987

[22] Neumann B.H., “An essay on free products of groups with amalgamations”, Philos. Trans. Roy. Soc. London A, 246 (1954), 503–554 | DOI | MR | Zbl

[23] Neumann B.H., Neumann H., “Embedding theorems for groups”, J. London Math. Soc., 34 (1959), 465–479 | DOI | MR | Zbl

[24] Higman G., Neumann B.H., Neumann H., “Embedding theorems for groups”, J. London Math. Soc., 24 (1949), 247–254 | DOI | MR

[25] Ol'shanskii A.Yu., Sapir M.V., “Non-amenable finitely presented torsion-by-cyclic groups”, Publ. Math. IHES, 96 (2003), 43–169 | DOI | MR

[26] Ivanov S.V., “On subgroups of free Burnside groups of large odd exponent”, Ill. J. Math., 47:1–2 (2003), 299–304 | MR | Zbl

[27] Olshanskii A.Yu., “SQ-universalnost giperbolicheskikh grupp”, Mat. sb., 186:8 (1995), 119–132 | MR

[28] Shirvanyan V.L., “Vlozhenie gruppy $\mathbf B(\infty ,n)$ v gruppu $\mathbf B(2,n)$”, Izv. AN SSSR. Ser. mat., 40:1 (1976), 190–208 | MR | Zbl

[29] Atabekyan V.S., Ob approksimatsii i podgruppakh svobodnykh periodicheskikh grupp, Dep. v VINITI, No5380-V86, M., 1986

[30] Sonkin D., “CEP-subgroups of free Burnside groups of large odd exponents”, Commun. Algebra, 31:10 (2003), 4687–4695 | DOI | MR | Zbl

[31] Obraztsov V.N., “Teorema o vlozheniyakh grupp i ee sledstviya”, Mat. sb., 180:4 (1989), 529–541 | Zbl

[32] Atabekyan V.S., “O prostykh i svobodnykh periodicheskikh gruppakh”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1987, no. 6, 76–78 | MR | Zbl

[33] Atabekyan V.S., “O podgruppakh svobodnykh bernsaidovykh grupp nechetnogo perioda $n\ge 1003$”, Izv. RAN. Ser. mat., 73:5 (2009), 3–36 | DOI | MR | Zbl

[34] Atabekyan V.S., “Ravnomernaya neamenabelnost podgrupp svobodnykh bernsaidovykh grupp nechetnogo perioda”, Mat. zametki, 85:4 (2009), 516–523 | DOI | MR | Zbl

[35] Osin D.V., “Uniform non-amenability of free Burnside groups”, Arch. Math., 88:5 (2007), 403–412 | DOI | MR | Zbl

[36] Atabekyan V.S., “O monomorfizmakh svobodnykh bernsaidovykh grupp”, Mat. zametki, 86:4 (2009), 483–490 | DOI | MR | Zbl

[37] Pahlevanyan A.S., “Independent pairs in free Burnside groups”, Proc. Yerevan State Univ. Phys. and Math. Sci., 2010, no. 2, 58–62

[38] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp: Predstavlenie grupp v terminakh obrazuyuschikh i sootnoshenii, Nauka, M., 1974 | MR | Zbl

[39] Kurosh A.G., Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[40] Atabekyan V.S., “Normalnye avtomorfizmy svobodnykh bernsaidovykh grupp”, Izv. RAN. Ser. mat., 75:2 (2011), 3–18 | DOI | MR | Zbl

[41] Ol'shanskii A.Yu., “Self-normalization of free subgroups in the free Burnside groups”, Groups, rings, Lie and Hopf algebras, St. John's (Canada), 2001, Math. and Appl., 555, Kluwer, Dordrecht, 2003, 179–187 | MR | Zbl

[42] Cherepanov E.A., “Normal automorphisms of free Burnside groups of large odd exponents”, Intern. J. Algebra and Comput., 16:5 (2006), 839–847 | DOI | MR | Zbl

[43] Kourovskaya tetrad: Nereshennye voprosy teorii grupp, 7-e izd., Pod red. V.D. Mazurova, Yu.I. Merzlyakova, V.A. Chirkina, Izd. In-ta matematiki SO AN SSSR, Novosibirsk, 1980

[44] Atabekyan V.S., “Normalizatory svobodnykh podgrupp svobodnykh bernsaidovykh grupp nechetnogo perioda $n\ge 1003$”, Fund. i prikl. matematika, 15:1 (2009), 3–21 | MR