On squares of modal logics with additional connectives
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 343-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives an overview of new results on two-dimensional modal logics of special type, “Segerberg squares.” They are defined as usual squares of modal logics with additional connectives corresponding to the diagonal symmetry and two projections onto the diagonal. In many cases these logics are finitely axiomatizable, complete and have the finite model property. Segerberg squares are interpreted in the classical predicate logic.
@article{TM_2011_274_a19,
     author = {V. B. Shehtman},
     title = {On squares of modal logics with additional connectives},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {343--351},
     publisher = {mathdoc},
     volume = {274},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_274_a19/}
}
TY  - JOUR
AU  - V. B. Shehtman
TI  - On squares of modal logics with additional connectives
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 343
EP  - 351
VL  - 274
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_274_a19/
LA  - ru
ID  - TM_2011_274_a19
ER  - 
%0 Journal Article
%A V. B. Shehtman
%T On squares of modal logics with additional connectives
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 343-351
%V 274
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_274_a19/
%G ru
%F TM_2011_274_a19
V. B. Shehtman. On squares of modal logics with additional connectives. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 343-351. http://geodesic.mathdoc.fr/item/TM_2011_274_a19/

[1] Andréka H., van Benthem J., Németi I., “Back and forth between modal logic and classical logic”, J. IGPL, 3 (1995), 685–720 | DOI | MR | Zbl

[2] Åqvist L., “A conjectured axiomatization of two-dimensional Reichenbachian tense logic”, J. Philos. Logic., 8:1 (1979), 1–45 | MR

[3] van Benthem J., Modal logic and classical logic, Bibliopolis, Napoli, 1983

[4] Chagrov A., Zakharyaschev M., Modal logic, Oxford Univ. Press, Oxford, 1997 | MR | Zbl

[5] Gabbay D.M., Kurucz A., Wolter F., Zakharyaschev M., Many-dimensional modal logics: theory and applications, Elsevier, Amsterdam, 2003 | MR | Zbl

[6] Gabbay D.M., Shehtman V.B., “Products of modal logics. Part 1”, Log. J. IGPL, 6 (1998), 73–146 | DOI | MR | Zbl

[7] Gabbay D.M., Shehtman V.B., “Products of modal logics. Part 2: Relativised quantifiers in classical logic”, Log. J. IGPL, 8 (2000), 165–210 | DOI | MR | Zbl

[8] Gabbay D., Shehtman V., “Products of modal logics. Part 3: Products of modal and temporal logics”, Stud. Log., 72 (2002), 157–183 | DOI | MR | Zbl

[9] Kikot S.P., “Ob aksiomatike kvadratov modalnykh logik s vydelennoi diagonalyu”, Mat. zametki, 88:2 (2010), 261–274 | DOI | MR | Zbl

[10] Kurucz A., “Combining modal logics”, Handbook of modal logic, Elsevier, Amsterdam, 2007, 869–924 | DOI

[11] Marx M., Venema Y., Multi-dimensional modal logic, Appl. Log. Ser., 4, Kluwer, Dordrecht, 1997 | DOI | MR | Zbl

[12] Segerberg K., “Two-dimensional modal logic”, J. Philos. Logic., 2 (1973), 77–96 | DOI | MR | Zbl

[13] Shekhtman V.B., “Dvumernye modalnye logiki”, Mat. zametki, 23:5 (1978), 759–772 | MR | Zbl

[14] Shehtman V., “Filtration via bisimulation”, Advances in modal logic, 5, eds. R. Schmidt et al., King's College Publ., London, 2005, 289–308 | MR | Zbl

[15] Wajsberg M., “Ein erweiter Klassenkalkül”, Monatsh. Math. und Phys., 40 (1933), 113–126 | DOI | MR | Zbl