Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_274_a13, author = {Vladimir V. Podolskii}, title = {Degree-uniform lower bound on the weights of polynomials with given sign function}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {252--268}, publisher = {mathdoc}, volume = {274}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2011_274_a13/} }
TY - JOUR AU - Vladimir V. Podolskii TI - Degree-uniform lower bound on the weights of polynomials with given sign function JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 252 EP - 268 VL - 274 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2011_274_a13/ LA - ru ID - TM_2011_274_a13 ER -
Vladimir V. Podolskii. Degree-uniform lower bound on the weights of polynomials with given sign function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 252-268. http://geodesic.mathdoc.fr/item/TM_2011_274_a13/
[1] Beigel R., “The polynomial method in circuit complexity”, Structure in complexity theory, Proc. Eighth Annu. Conf., San Diego, CA, 1993, IEEE Computer Soc. Press, Los Alamitos, CA, 1993, 82–95 | MR
[2] Beigel R., “Perceptrons, PP, and the polynomial hierarchy”, Comput. Complexity, 4:4 (1994), 339–349 | DOI | MR | Zbl
[3] Bruck J., “Harmonic analysis of polynomial threshold functions”, SIAM J. Discr. Math., 3:2 (1990), 168–177 | DOI | MR | Zbl
[4] Goldmann M., “On the power of a threshold gate at the top”, Inf. Process. Lett., 63:6 (1997), 287–293 | DOI | MR
[5] Hajnal A., Maass W., Pudlák P., Szegedy M., Turán G., “Threshold circuits of bounded depth”, J. Comput. and Syst. Sci., 46:2 (1993), 129–154 | DOI | MR
[6] Håstad J., “On the size of weights for threshold gates”, SIAM J. Discr. Math., 7:3 (1994), 484–492 | DOI | MR
[7] Klivans A.R., Servedio R.A., “Learning DNF in time $2^{\tilde O(n^{1/3})}$”, J. Comput. and Syst. Sci., 68:2 (2004), 303–318 | DOI | MR | Zbl
[8] Krause M., Pudlák P., “Computing Boolean functions by polynomials and threshold circuits”, Comput. Complexity, 7:4 (1998), 346–370 | DOI | MR | Zbl
[9] Minskii M., Peipert S., Perseptrony, Mir, M., 1971
[10] Muroga S., Threshold logic and its applications, Wiley–Intersci., New York, 1971 | MR | Zbl
[11] Myhill J., Kautz W.H., “On the size of weights required for linear-input switching functions”, IRE Trans. Electron. Comput., EC10:2 (1961), 288–290 | DOI | MR
[12] Podolskii V.V., “A uniform lower bound on weights of perceptrons”, Computer science—theory and applications, Proc. 3rd Intern. Symp. CSR 2008, Moscow (Russia), June 7–12, 2008, Lect. Notes Comput. Sci., 5010, Springer, Berlin, 2008, 261–272 | DOI | MR | Zbl
[13] Podolskii V.V., “Pertseptrony s bolshim vesom”, Probl. peredachi inform., 45:1 (2009), 51–59 | MR | Zbl
[14] Razborov A.A., “On small depth threshold circuits”, Algorithm theory, Proc. Third Scand. Workshop, Helsinki, July 8–10, 1992, Lect. Notes Comput. Sci., 621, Springer, Berlin, 1992, 42–52 | DOI | MR
[15] Saks M.E., “Slicing the hypercube”, Surveys in combinatorics, LMS Lect. Note Ser., 187, Cambridge Univ. Press, Cambridge, 1993, 211–255 | MR | Zbl
[16] Sherstov A.A., “Communication lower bounds using dual polynomials”, Bull. Eur. Assoc. Theor. Comput. Sci., 95 (2008), 59–93 | MR | Zbl