Bilattices and hyperidentities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 191-209

Voir la notice de l'article provenant de la source Math-Net.Ru

Bilattices as algebras with two lattice structures were introduced by M. Ginsberg and M. Fitting in 1986–1990. They have found wide applications in logic programming, multi-valued logic, and artificial intelligence. We call these bilattices Ginsberg's bilattices. The description of Ginsberg's bilattices was obtained by various authors under the conditions of interlacement (or distributivity) and boundedness. In this paper, we prove that this description remains true without the second condition, while interlacement can be replaced with a weaker form called weak interlacement here. In particular, we prove that every weakly interlaced bilattice is isomorphic to the superproduct of two lattices, while every weakly interlaced Ginsberg bilattice is isomorphic to the Ginsberg superproduct of two equal lattices.
@article{TM_2011_274_a10,
     author = {Yu. M. Movsisyan},
     title = {Bilattices and hyperidentities},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {191--209},
     publisher = {mathdoc},
     volume = {274},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_274_a10/}
}
TY  - JOUR
AU  - Yu. M. Movsisyan
TI  - Bilattices and hyperidentities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 191
EP  - 209
VL  - 274
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_274_a10/
LA  - ru
ID  - TM_2011_274_a10
ER  - 
%0 Journal Article
%A Yu. M. Movsisyan
%T Bilattices and hyperidentities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 191-209
%V 274
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_274_a10/
%G ru
%F TM_2011_274_a10
Yu. M. Movsisyan. Bilattices and hyperidentities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algorithmic aspects of algebra and logic, Tome 274 (2011), pp. 191-209. http://geodesic.mathdoc.fr/item/TM_2011_274_a10/