Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_273_a8, author = {V. V. Kozlov}, title = {Problem of stability of two-link trajectories in a~multidimensional {Birkhoff} billiard}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {212--230}, publisher = {mathdoc}, volume = {273}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2011_273_a8/} }
TY - JOUR AU - V. V. Kozlov TI - Problem of stability of two-link trajectories in a~multidimensional Birkhoff billiard JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 212 EP - 230 VL - 273 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2011_273_a8/ LA - ru ID - TM_2011_273_a8 ER -
V. V. Kozlov. Problem of stability of two-link trajectories in a~multidimensional Birkhoff billiard. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, Tome 273 (2011), pp. 212-230. http://geodesic.mathdoc.fr/item/TM_2011_273_a8/
[1] Babich V.M., Buldyrev V.S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR
[2] Kozlov V.V., Treschev D.V., Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo Mosk. un-ta, M., 1991 | MR | Zbl
[3] Kozlov V.V., “Dvuzvennye billiardnye traektorii: ekstremalnye svoistva i ustoichivost”, PMM, 64:6 (2000), 942–946 | MR | Zbl
[4] Markeev A.A., “The method of pointwise mappings in the stability problem of two-segment trajectories of the Birkhoff billiards”, Dynamical systems in classical mechanics, AMS Transl. Ser. 2, 168, Amer. Math. Soc., Providence, RI, 1995, 211–226 | MR
[5] Markeev A.P., “O sokhranyayuschikh ploschad otobrazheniyakh i ikh primenenii v dinamike sistem s soudareniyami”, Izv. RAN. Mekhanika tverdogo tela, 1996, no. 2, 37–54 | MR
[6] Kozlov V.V., Chigur I.I., “Ob ustoichivosti periodicheskikh traektorii prostranstvennogo billiarda”, PMM, 55:5 (1991), 713–717 | MR | Zbl
[7] Kozlov V.V., “Konstruktivnyi metod obosnovaniya teorii sistem s neuderzhivayuschimi svyazyami”, PMM, 52:6 (1988), 883–894 | MR | Zbl
[8] Gantmakher F.R., Teoriya matrits, 5-e izd., Fizmatlit, M., 2004
[9] Mackay R.S., Meiss J.D., “Linear stability of periodic orbits in Lagrangian systems”, Phys. Lett. A, 98:3 (1983), 92–94 | DOI | MR
[10] Treschev D.V., “K voprosu ob ustoichivosti periodicheskikh traektorii bilyarda Birkgofa”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1988, no. 2, 44–50
[11] Hill G.W., “On the part of the motion of the lunar perigel wich is a function of the mean motion of the Sun and Moon”, Acta math., 8 (1886), 1–36 | DOI | MR
[12] Poincaré H., “Sur les déterminants d'ordre infini”, Bull. Soc. math. France, 14 (1886), 77–90 | MR
[13] Puankare A., “Novye metody nebesnoi mekhaniki”, Izbr. tr., T. 2, Nauka, M., 1972
[14] Kozlov V.V., “Zamechaniya o sobstvennykh chislakh veschestvennykh matrits”, DAN, 403:5 (2005), 589–592 | MR | Zbl
[15] Kozlov V.V., Karapetyan A.A., “O stepeni ustoichivosti”, Dif. uravneniya, 41:2 (2005), 186–192 | MR | Zbl
[16] Pontryagin L.S., “Ermitovy operatory v prostranstve s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. mat., 8:6 (1944), 243–280 | Zbl
[17] Krein M.G., “Ob odnom primenenii printsipa nepodvizhnoi tochki v teorii lineinykh preobrazovanii prostranstv s indefinitnoi metrikoi”, UMN, 5:2 (1950), 180–190 | MR | Zbl
[18] Arnold V.I., “Ob usloviyakh nelineinoi ustoichivosti ploskikh statsionarnykh krivolineinykh techenii idealnoi zhidkosti”, DAN SSSR, 162:5 (1965), 975–978 | MR | Zbl
[19] Wimmer H.K., “Inertia theorems for matrices, controllability, and linear vibrations”, Lin. Algebra and Appl., 8 (1974), 337–343 | DOI | MR | Zbl
[20] Shkalikov A.A., “Operator pencils arising in elasticity and hydrodynamics: The instability index formula”, Recent developments in operator theory and its applications, Operator Theory. Adv. and Appl., 87, Basel, 1996, 358–385 | MR | Zbl
[21] Kozlov V.V., “O mekhanizme poteri ustoichivosti”, Dif. uravneniya, 45:4 (2009), 496–505 | MR | Zbl