Problem of stability of two-link trajectories in a~multidimensional Birkhoff billiard
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, Tome 273 (2011), pp. 212-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linearized problem of stability of simple periodic motions with elastic reflections is considered: a particle moves along a straight-line segment that is orthogonal to the boundary of a billiard at its endpoints. In this problem issues from mechanics (variational principles), linear algebra (spectral properties of products of symmetric operators), and geometry (focal points, caustics, etc.) are naturally intertwined. Multidimensional variants of Hill's formula, which relates the dynamic and geometric properties of a periodic trajectory, are discussed. Stability conditions are expressed in terms of the geometric properties of the boundary of a billiard. In particular, it turns out that a nondegenerate two-link trajectory of maximum length is always unstable. The degree of instability (the number of multipliers outside the unit disk) is estimated. The estimates are expressed in terms of the geometry of the caustic and the Morse indices of the length function of this trajectory.
@article{TM_2011_273_a8,
     author = {V. V. Kozlov},
     title = {Problem of stability of two-link trajectories in a~multidimensional {Birkhoff} billiard},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {212--230},
     publisher = {mathdoc},
     volume = {273},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_273_a8/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Problem of stability of two-link trajectories in a~multidimensional Birkhoff billiard
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 212
EP  - 230
VL  - 273
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_273_a8/
LA  - ru
ID  - TM_2011_273_a8
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Problem of stability of two-link trajectories in a~multidimensional Birkhoff billiard
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 212-230
%V 273
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_273_a8/
%G ru
%F TM_2011_273_a8
V. V. Kozlov. Problem of stability of two-link trajectories in a~multidimensional Birkhoff billiard. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, Tome 273 (2011), pp. 212-230. http://geodesic.mathdoc.fr/item/TM_2011_273_a8/

[1] Babich V.M., Buldyrev V.S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[2] Kozlov V.V., Treschev D.V., Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo Mosk. un-ta, M., 1991 | MR | Zbl

[3] Kozlov V.V., “Dvuzvennye billiardnye traektorii: ekstremalnye svoistva i ustoichivost”, PMM, 64:6 (2000), 942–946 | MR | Zbl

[4] Markeev A.A., “The method of pointwise mappings in the stability problem of two-segment trajectories of the Birkhoff billiards”, Dynamical systems in classical mechanics, AMS Transl. Ser. 2, 168, Amer. Math. Soc., Providence, RI, 1995, 211–226 | MR

[5] Markeev A.P., “O sokhranyayuschikh ploschad otobrazheniyakh i ikh primenenii v dinamike sistem s soudareniyami”, Izv. RAN. Mekhanika tverdogo tela, 1996, no. 2, 37–54 | MR

[6] Kozlov V.V., Chigur I.I., “Ob ustoichivosti periodicheskikh traektorii prostranstvennogo billiarda”, PMM, 55:5 (1991), 713–717 | MR | Zbl

[7] Kozlov V.V., “Konstruktivnyi metod obosnovaniya teorii sistem s neuderzhivayuschimi svyazyami”, PMM, 52:6 (1988), 883–894 | MR | Zbl

[8] Gantmakher F.R., Teoriya matrits, 5-e izd., Fizmatlit, M., 2004

[9] Mackay R.S., Meiss J.D., “Linear stability of periodic orbits in Lagrangian systems”, Phys. Lett. A, 98:3 (1983), 92–94 | DOI | MR

[10] Treschev D.V., “K voprosu ob ustoichivosti periodicheskikh traektorii bilyarda Birkgofa”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1988, no. 2, 44–50

[11] Hill G.W., “On the part of the motion of the lunar perigel wich is a function of the mean motion of the Sun and Moon”, Acta math., 8 (1886), 1–36 | DOI | MR

[12] Poincaré H., “Sur les déterminants d'ordre infini”, Bull. Soc. math. France, 14 (1886), 77–90 | MR

[13] Puankare A., “Novye metody nebesnoi mekhaniki”, Izbr. tr., T. 2, Nauka, M., 1972

[14] Kozlov V.V., “Zamechaniya o sobstvennykh chislakh veschestvennykh matrits”, DAN, 403:5 (2005), 589–592 | MR | Zbl

[15] Kozlov V.V., Karapetyan A.A., “O stepeni ustoichivosti”, Dif. uravneniya, 41:2 (2005), 186–192 | MR | Zbl

[16] Pontryagin L.S., “Ermitovy operatory v prostranstve s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. mat., 8:6 (1944), 243–280 | Zbl

[17] Krein M.G., “Ob odnom primenenii printsipa nepodvizhnoi tochki v teorii lineinykh preobrazovanii prostranstv s indefinitnoi metrikoi”, UMN, 5:2 (1950), 180–190 | MR | Zbl

[18] Arnold V.I., “Ob usloviyakh nelineinoi ustoichivosti ploskikh statsionarnykh krivolineinykh techenii idealnoi zhidkosti”, DAN SSSR, 162:5 (1965), 975–978 | MR | Zbl

[19] Wimmer H.K., “Inertia theorems for matrices, controllability, and linear vibrations”, Lin. Algebra and Appl., 8 (1974), 337–343 | DOI | MR | Zbl

[20] Shkalikov A.A., “Operator pencils arising in elasticity and hydrodynamics: The instability index formula”, Recent developments in operator theory and its applications, Operator Theory. Adv. and Appl., 87, Basel, 1996, 358–385 | MR | Zbl

[21] Kozlov V.V., “O mekhanizme poteri ustoichivosti”, Dif. uravneniya, 45:4 (2009), 496–505 | MR | Zbl