Topological properties of eigenoscillations in mathematical physics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, Tome 273 (2011), pp. 30-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

Courant proved that the zeros of the $n$th eigenfunction of the Laplace operator on a compact manifold $M$ divide this manifold into at most $n$ parts. He conjectured that a similar statement is also valid for any linear combination of the first $n$ eigenfunctions. However, later it was found out that some corollaries to this generalized statement contradict the results of quantum field theory. Later, explicit counterexamples were constructed by O. Viro. Nevertheless, the one-dimensional version of Courant's theorem is apparently valid; to prove it, I. M. Gel'fand proposed a method based on the ideas of quantum mechanics and the analysis of the actions of permutation groups. This leads to interesting questions of describing the statistical properties of group representations that arise from their action on eigenfunctions of the Laplace operator. The analysis of these questions entails, among other things, problems of singularity theory.
@article{TM_2011_273_a2,
     author = {V. I. Arnold},
     title = {Topological properties of eigenoscillations in mathematical physics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {30--40},
     publisher = {mathdoc},
     volume = {273},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_273_a2/}
}
TY  - JOUR
AU  - V. I. Arnold
TI  - Topological properties of eigenoscillations in mathematical physics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 30
EP  - 40
VL  - 273
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_273_a2/
LA  - ru
ID  - TM_2011_273_a2
ER  - 
%0 Journal Article
%A V. I. Arnold
%T Topological properties of eigenoscillations in mathematical physics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 30-40
%V 273
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_273_a2/
%G ru
%F TM_2011_273_a2
V. I. Arnold. Topological properties of eigenoscillations in mathematical physics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, Tome 273 (2011), pp. 30-40. http://geodesic.mathdoc.fr/item/TM_2011_273_a2/

[1] Courant R., Hilbert D., Methods of mathematical physics, V. 1, Ch. 7, § 5, Interscience, New York, 1953 | MR

[2] Arnold V.I., “O raspolozhenii ovalov veschestvennykh ploskikh algebraicheskikh krivykh, involyutsiyakh chetyrekhmernykh gladkikh mnogoobrazii i arifmetike tselochislennykh kvadratichnykh form”, Funkts. anal. i ego pril., 5:3 (1971), 1–9 | MR

[3] Arnold V.I., “Mody i kvazimody”, Funkts. anal. i ego pril., 6:2 (1972), 12–20 | MR | Zbl

[4] Arnold V.I., Korkina E.A., “Rost magnitnogo polya v trekhmernom statsionarnom potoke neszhimaemoi zhidkosti”, Vestn. MGU. Matematika. Mekhanika, 1983, no. 3, 43–46 | Zbl

[5] Arnold V.I., “Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect”, Sel. Math. New Ser., 1:1 (1995), 1–19 | DOI | MR | Zbl

[6] Arnold V.I., “On the topology of the eigenfields”, Topol. Methods Nonlinear Anal., 26 (2005), 9–16 | MR | Zbl

[7] Arnold V.I., “Frequent representations”, Moscow Math. J., 3:4 (2003), 1209–1221 | MR | Zbl

[8] Arnold V.I., Arnold's problems, Springer, Berlin, 2004, Problems 1987-10, 2003-6, 2003-10, 1994-43, 1983-2, 1985-21 | MR