On basic concepts of tropical geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, Tome 273 (2011), pp. 271-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a binary operation over complex numbers that is a tropical analog of addition. This operation, together with the ordinary multiplication of complex numbers, satisfies axioms that generalize the standard field axioms. The algebraic geometry over a complex tropical hyperfield thus defined occupies an intermediate position between the classical complex algebraic geometry and tropical geometry. A deformation similar to the Litvinov–Maslov dequantization of real numbers leads to the degeneration of complex algebraic varieties into complex tropical varieties, whereas the amoeba of a complex tropical variety turns out to be the corresponding tropical variety. Similar tropical modifications with multivalued additions are constructed for other fields as well: for real numbers, $p$-adic numbers, and quaternions.
@article{TM_2011_273_a12,
     author = {O. Ya. Viro},
     title = {On basic concepts of tropical geometry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {271--303},
     publisher = {mathdoc},
     volume = {273},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_273_a12/}
}
TY  - JOUR
AU  - O. Ya. Viro
TI  - On basic concepts of tropical geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 271
EP  - 303
VL  - 273
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_273_a12/
LA  - ru
ID  - TM_2011_273_a12
ER  - 
%0 Journal Article
%A O. Ya. Viro
%T On basic concepts of tropical geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 271-303
%V 273
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_273_a12/
%G ru
%F TM_2011_273_a12
O. Ya. Viro. On basic concepts of tropical geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, Tome 273 (2011), pp. 271-303. http://geodesic.mathdoc.fr/item/TM_2011_273_a12/

[1] Bergman G.M., “The logarithmic limit-set of an algebraic variety”, Trans. Amer. Math. Soc., 157 (1971), 459–469 | DOI | MR

[2] Berkovich V.G., Spectral theory and analytic geometry over non-Archimedean fields, Math. Surv. and Monogr., 33, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl

[3] Bieri R., Groves J.R.J., “The geometry of the set of characters induced by valuations”, J. reine und angew. Math., 347 (1984), 168–195 | MR | Zbl

[4] Buchstaber V.M., Rees E.G., “Multivalued groups, their representations and Hopf algebras”, Transform. Groups, 2 (1997), 325–349 | DOI | MR | Zbl

[5] Comer S.D., “Combinatorial aspects of relations”, Algebra Univers, 18 (1984), 77–94 | DOI | MR | Zbl

[6] Dresher M., Ore O., “Theory of multigroups”, Amer. J. Math., 60 (1938), 705–733 | DOI | MR

[7] Einsiedler M., Kapranov M., Lind D., “Non-archimedean amoebas and tropical varieties”, J. reine und angew. Math., 601 (2006), 139–157, arXiv: math/0408311 [math.AG] | DOI | MR | Zbl

[8] Fell J.M.G., “A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space”, Proc. Amer. Math. Soc., 13 (1962), 472–476 | DOI | MR | Zbl

[9] Gathmann A., Tropical algebraic geometry, E-print, 2006, arXiv: math/0601322 [math.AG] | MR

[10] Gelfand I.M., Kapranov M.M., Zelevinsky A.V., Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994 | MR

[11] Itenberg I., Viro O., “Patchworking algebraic curves disproves the Ragsdale conjecture”, Math. Intell., 18:4 (1996), 19–28 | DOI | MR | Zbl

[12] Kapranov M., Amoebas over non-archimedean fields, Preprint, 2000 | MR

[13] Katz E., A tropical toolkit, E-print, 2006, arXiv: math/0610878 [math.AG] | MR

[14] Kontsevich M., Soibelman Y., “Homological mirror symmetry and torus fibrations”, Symplectic geometry and mirror symmetry (Seoul, 2000), World Sci., Singapore, 2001, 203–263, arXiv: math/0011041 [math.AG] | DOI | MR | Zbl

[15] Litvinov G.L., Maslov V.P., “The correspondence principle for idempotent calculus and some computer applications”, Idempotency, eds. Ed. by J. Gunawardena, Cambridge Univ. Press, Cambridge, 1998, 420–443 | DOI | MR | Zbl

[16] Marshall M., “Real reduced multirings and multifields”, J. Pure and Appl. Algebra, 205 (2006), 452–468 | DOI | MR | Zbl

[17] Marty F., “Sur une généralisation de la notion de groupe”, Särtryck ur Förhandlingar vid Ättonde Skandinaviska Matematikerkongressen (Stockholm), 1934, 45–49 | Zbl

[18] Mikhalkin G., “Decomposition into pairs-of-pants for complex algebraic hypersurfaces”, Topology., 43:5 (2004), 1035–1065, arXiv: math/0205011v3 [math.GT] | DOI | MR | Zbl

[19] Mikhalkin G., “Enumerative tropical algebraic geometry in $\mathbb R^2$”, J. Amer. Math. Soc., 18:2 (2005), 313–377, arXiv: math/0312530 [math.AG] | DOI | MR | Zbl

[20] Mikhalkin G., “Tropical geometry and its applications”, Proc. Intern. Congr. Math. (Madrid, 2006), v. 2, Eur. Math. Soc., Zürich, 2006, 827–852 | MR | Zbl

[21] Mikhalkin G., Introduction to tropical geometry: Notes from the IMPA lectures, Summer 2007, E-print, 2007, arXiv: math/0709.1049 [math.AG]

[22] Mikhalkin G., Zharkov I., Tropical curves, their Jacobians and theta functions, E-print, 2006, arXiv: math/0612267 [math.AG] | MR

[23] Pachner U., “Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten”, Abh. Math. Sem. Hamb., 57 (1987), 69–86 | DOI | MR | Zbl

[24] Parker B., “Exploded fibrations”, Proc. 13th Gökova Geometry–Topology Conf., 2006, Intern. Press, Cambridge, MA, 2007, 52–90, arXiv: math/0705.2408 [math.SG] | MR | Zbl

[25] Richter-Gebert J., Sturmfels B., Theobald T., “First steps in tropical geometry”, Idempotent mathematics and mathematical physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 289–317 | DOI | MR | Zbl

[26] Sturmfels B., Solving systems of polynomial equations, Ch. 9, CBMS Reg. Conf. Ser. Math., 97, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[27] Vietoris L., “Bereiche zweiter Ordnung”, Monatsch. Math., 32 (1922), 258–280 | DOI | MR | Zbl

[28] Viro O.Ya., “Skleivanie algebraicheskikh giperpoverkhnostei, ustraneniya osobennostei i postroeniya krivykh”, Tr. Leningrad. Mezhdunar. topologicheskoi konf., 1982, Nauka, L., 1983, 149–197

[29] Viro O., “Dequantization of real algebraic geometry on logarithmic paper”, 3rd Eur. Congr. Math. (Barcelona, 2000), v. 1, Birkhäuser, Basel, 2001, 135–146, arXiv: math/0005163 [math.AG] | DOI | MR | Zbl

[30] Wall H.S., “Hypergroups”, Bull. Amer. Math. Soc., 41 (1935), 36 | DOI | Zbl

[31] Wall H.S., “Hypergroups”, Amer. J. Math., 59 (1937), 77–98 | DOI | MR