On basic concepts of tropical geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, Tome 273 (2011), pp. 271-303

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a binary operation over complex numbers that is a tropical analog of addition. This operation, together with the ordinary multiplication of complex numbers, satisfies axioms that generalize the standard field axioms. The algebraic geometry over a complex tropical hyperfield thus defined occupies an intermediate position between the classical complex algebraic geometry and tropical geometry. A deformation similar to the Litvinov–Maslov dequantization of real numbers leads to the degeneration of complex algebraic varieties into complex tropical varieties, whereas the amoeba of a complex tropical variety turns out to be the corresponding tropical variety. Similar tropical modifications with multivalued additions are constructed for other fields as well: for real numbers, $p$-adic numbers, and quaternions.
@article{TM_2011_273_a12,
     author = {O. Ya. Viro},
     title = {On basic concepts of tropical geometry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {271--303},
     publisher = {mathdoc},
     volume = {273},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_273_a12/}
}
TY  - JOUR
AU  - O. Ya. Viro
TI  - On basic concepts of tropical geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 271
EP  - 303
VL  - 273
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_273_a12/
LA  - ru
ID  - TM_2011_273_a12
ER  - 
%0 Journal Article
%A O. Ya. Viro
%T On basic concepts of tropical geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 271-303
%V 273
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_273_a12/
%G ru
%F TM_2011_273_a12
O. Ya. Viro. On basic concepts of tropical geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, Tome 273 (2011), pp. 271-303. http://geodesic.mathdoc.fr/item/TM_2011_273_a12/