Affine generalizations of gravity in the light of modern cosmology
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 117-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss new models of an “affine” theory of gravity in multidimensional space-times with symmetric connections. We use and develop ideas of Weyl, Eddington, and Einstein, in particular, Einstein's proposal to specify the space-time geometry by the use of the Hamilton principle. More specifically, the connection coefficients are determined using a “geometric” Lagrangian that is an arbitrary function of the generalized (nonsymmetric) Ricci curvature tensor (and, possibly, of other fundamental tensors) expressed in terms of the connection coefficients regarded as independent variables. Such a theory supplements the standard Einstein gravity with dark energy (the cosmological constant, in the first approximation), a neutral massive (or tachyonic) vector field (vecton), and massive (or tachyonic) scalar fields. These fields couple only to gravity and can generate dark matter and/or inflation. The new field masses (real or imaginary) have a geometric origin and must appear in any concrete model. The concrete choice of the geometric Lagrangian determines further details of the theory, for example, the nature of the vector and scalar fields that can describe massive particles, tachyons, or even “phantoms.” In “natural” geometric theories, which are discussed here, dark energy must also arise. We mainly focus on intricate relations between geometry and dynamics while only very briefly considering approximate cosmological models inspired by the geometric approach.
@article{TM_2011_272_a9,
     author = {A. T. Filippov},
     title = {Affine generalizations of gravity in the light of modern cosmology},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {117--128},
     publisher = {mathdoc},
     volume = {272},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_272_a9/}
}
TY  - JOUR
AU  - A. T. Filippov
TI  - Affine generalizations of gravity in the light of modern cosmology
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 117
EP  - 128
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_272_a9/
LA  - en
ID  - TM_2011_272_a9
ER  - 
%0 Journal Article
%A A. T. Filippov
%T Affine generalizations of gravity in the light of modern cosmology
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 117-128
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_272_a9/
%G en
%F TM_2011_272_a9
A. T. Filippov. Affine generalizations of gravity in the light of modern cosmology. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 117-128. http://geodesic.mathdoc.fr/item/TM_2011_272_a9/

[1] Space, time, matter, Dover Publ., New York, 1950 | MR | Zbl

[2] Eddington A.S., “A generalisation of Weyl's theory of the electromagnetic and gravitational fields”, Proc. Roy. Soc. London A, 99 (1921), 104 | DOI | Zbl

[3] Eddington A.S., The mathematical theory of relativity, Cambridge Univ. Press, Cambridge, 1923 | MR | Zbl

[4] Einstein A., “Zur allgemeinen Relativitätstheorie”, Sitzungsber. Preuss. Akad. Wiss. Phys.-math. Kl., 1923, 32 | Zbl

[5] Einstein A., “Zur affinen Feldtheorie”, Sitzungsber. Preuss. Akad. Wiss. Phys.-math. Kl., 1923, 137

[6] Einstein A., “Theory of the affine field”, Nature, 112 (1923), 448 | DOI

[7] Einstein A., “Eddingtons Theorie und Hamiltonisches Prinzip”: Eddington A., Relativitätstheorie in mathematischer Behandlung, Springer, Berlin, 1925

[8] Schrödinger E., Space–time structure, Cambridge Univ. Press, Cambridge, 1950 | MR | Zbl

[9] Theory of relativity, Pergamon Press, New York, 1958 | MR | Zbl

[10] Filippov A.T., On Einstein–Weyl unified model of dark energy and dark matter, E-print, 2008, arXiv: 0812.2616v2 [gr-qc]

[11] Filippov A.T., “Affinnaya gravitatsiya Veilya–Eddingtona–Einshteina v kontekste sovremennoi kosmologii”, TMF, 163:3 (2010), 430, arXiv: 1003.0782v2 [hep-th] | DOI | MR | Zbl

[12] Eisenhart L.P., Non-Riemannian geometry, Amer. Math. Soc., New York, 1927 | MR

[13] Born M., “On the quantum theory of the electromagnetic field”, Proc. Roy. Soc. London A, 143 (1934), 410 | DOI | Zbl

[14] Born M., Infeld L., “Foundations of the new field theory”, Proc. Roy. Soc. London A, 144 (1934), 425 | DOI

[15] Born M., Infeld L., “On the quantization of the new field equations. I”, Proc. Roy. Soc. London A, 147 (1934), 522 | DOI

[16] Born M., Infeld L., “On the quantization of the new field theory. II”, Proc. Roy. Soc. London A, 150 (1935), 141 | DOI

[17] Deser S., Gibbons G.W., “Born–Infeld–Einstein actions?”, Class. and Quantum Grav., 15 (1998), L35–L39, arXiv: hep-th/9803049v1 | DOI | MR | Zbl

[18] Bañados M., “Eddington–Born–Infeld action for dark matter and dark energy”, Phys. Rev. D, 77 (2008), 123534, arXiv: 0801.4103v4 [hep-th] | DOI

[19] Langlois D., Renaux-Petel S., Steer D.A., “Multi-field DBI inflation: introducing bulk forms and revisiting the gravitational wave constraints”, J. Cosmol. and Astropart. Phys., 2009, no. 4, 021, arXiv: 0902.2941v1 [hep-th] | DOI | MR

[20] Sahni V., Starobinsky A., “Reconstructing dark energy”, Intern. J. Mod. Phys. D, 15 (2006), 2105, arXiv: astro-ph/0610026v3 | DOI | MR | Zbl

[21] Linde A., Particle physics and inflatory cosmology, Contemp. Concepts Phys., 5, CRC Press, Boca Raton, 1990., arXiv: hep-th/0503203v1 | MR

[22] Mukhanov V., Physical foundations of cosmology, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[23] Weinberg S., Cosmology, Oxford Univ. Press, Oxford, 2008 | MR | Zbl

[24] Gorbunov D.S., Rubakov V.A., Vvedenie v teoriyu rannei Vselennoi: Teoriya goryachego Bolshogo vzryva, LKI, M., 2008

[25] Gorbunov D.S., Rubakov V.A., Vvedenie v teoriyu rannei Vselennoi: Kosmologicheskie vozmuscheniya. Inflyatsionnaya teoriya, Krasand, M., 2010

[26] Ford L.H., “Inflation driven by a vector field”, Phys. Rev. D, 40 (1989), 967 | DOI

[27] Bento M.C., Bertolami O., Moniz P.V., Mourão J.M., Sá P.M., “On the cosmology of massive vector fields with $SO(3)$ global symmetry”, Class. and Quantum Grav., 10 (1993), 285, arXiv: gr-qc/9302034v2 | DOI | MR | Zbl

[28] Armendáriz-Picón C., “Could dark energy be vector-like?”, J. Cosmol. and Astropart. Phys., 2004, no. 7, 007 | DOI

[29] Golovnev A., Mukhanov V., Vanchurin V., “Vector inflation”, J. Cosmol. and Astropart. Phys., 2008, no. 6, 009, arXiv: 0802.2068v3 [astro-ph] | DOI | MR

[30] Koivisto T.S., Mota D.F., “Vector field models of inflation and dark energy”, J. Cosmol. and Astropart. Phys., 2008, no. 8, 021 | DOI | MR

[31] Golovnev A., Vanchurin V., “Cosmological perturbations from vector inflation”, Phys. Rev. D, 79 (2009), 103524, arXiv: 0903.2977v1 [astro-ph.CO] | DOI

[32] Germani C., Kehagias A., “P-nflation: generating cosmic inflation with p-forms”, J. Cosmol. and Astropart. Phys., 2009, no. 3, 028, arXiv: 0902.3667 [astro-phys.CO] | DOI

[33] Cavaglià M., de Alfaro V., Filippov A.T., “Hamiltonian formalism for black holes and quantization. I, II”, Intern. J. Mod. Phys. D, 4 (1995), 661 ; 5 (1996), 227–250 | DOI | MR | DOI | MR

[34] Cavaglià M., de Alfaro V., “Quantization of an integrable minisuperspace model in dilaton–Einstein gravity”, Intern. J. Mod. Phys. D, 6 (1997), 39 | DOI | Zbl

[35] Filippov A.T., “Exact solutions of $(1+1)$-dimensional dilaton gravity coupled to matter”, Mod. Phys. Lett. A, 11 (1996), 1691 | DOI | MR | Zbl

[36] Filippov A.T., “Integrable $1+1$ dimensional gravity models”, Intern. J. Mod. Phys. A, 12 (1997), 13 | DOI | MR | Zbl

[37] Nicolai H., Korotkin D., Samtleben H., Integrable classical and quantum gravity, E-print, 1996, arXiv: hep-th/9612065 | MR

[38] Lukas A., Ovrut B.A., Waldram D., “Cosmological solutions of type II string theory”, Phys. Lett. B, 393 (1997), 65 | DOI | MR

[39] Larsen F., Wilczek F., “Resolution of cosmological singularities in string theory”, Phys. Rev. D, 55 (1997), 4591 | DOI | MR

[40] Lü H., Mukherji S., Pope C.N., “From $p$-branes to cosmology”, Intern. J. Mod. Phys. A, 14 (1999), 4121 | DOI | MR | Zbl

[41] Filippov A.T., “Integriruemye modeli $(1+1)$-mernoi dilatonnoi gravitatsii, vzaimodeistvuyuschei so skalyarnoi materiei”, TMF, 146:1 (2006), 115, arXiv: hep-th/0505060v2 | DOI | MR | Zbl

[42] de Alfaro V., Filippov A.T., “Razmernaya reduktsiya gravitatsii i svyaz mezhdu staticheskimi sostoyaniyami, kosmologicheskimi modelyami i volnami”, TMF, 153:3 (2007), 422, arXiv: hep-th/0612258v2 | DOI | MR | Zbl

[43] de Alfaro V., Filippov A.T., “Multieksponentsialnye modeli $(1+1)$-mernoi dilatonnoi gravitatsii i integriruemye modeli Tody–Liuvillya”, TMF, 162:1 (2010), 41, arXiv: 0902.4445v2 [hep-th] | DOI | MR | Zbl