Higher covariant derivative regularization for calculations in supersymmetric theories
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 266-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

A variant of the higher covariant derivative regularization is used for calculation of a two-loop $\beta$-function for the general renormalizable $N=1$ supersymmetric theory. It is shown that the $\beta$-function is given by integrals of total derivatives. Partially this can be explained by substituting solutions of Slavnov–Taylor identities into the Schwinger–Dyson equations.
@article{TM_2011_272_a23,
     author = {K. V. Stepanyantz},
     title = {Higher covariant derivative regularization for calculations in supersymmetric theories},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {266--276},
     publisher = {mathdoc},
     volume = {272},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_272_a23/}
}
TY  - JOUR
AU  - K. V. Stepanyantz
TI  - Higher covariant derivative regularization for calculations in supersymmetric theories
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 266
EP  - 276
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_272_a23/
LA  - ru
ID  - TM_2011_272_a23
ER  - 
%0 Journal Article
%A K. V. Stepanyantz
%T Higher covariant derivative regularization for calculations in supersymmetric theories
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 266-276
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_272_a23/
%G ru
%F TM_2011_272_a23
K. V. Stepanyantz. Higher covariant derivative regularization for calculations in supersymmetric theories. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 266-276. http://geodesic.mathdoc.fr/item/TM_2011_272_a23/

[1] t'\;Hooft G., Veltman M., “Regularization and renormalization of gauge fields”, Nucl. Phys. B, 44 (1972), 189 | DOI | MR

[2] Siegel W., “Supersymmetric dimensional regularization via dimensional reduction”, Phys. Lett. B, 84 (1979), 193 | DOI | MR

[3] Avdeev L.V., Tarasov O.V., “The three-loop beta-function in the $N=1,2,4$ supersymmetric Yang–Mills theories”, Phys. Lett. B, 112 (1982), 356 | DOI

[4] Abbott L.F., Grisaru M.T., Zanon D., “Infrared divergences and a non-local gauge for superspace Yang–Mills theory”, Nucl. Phys. B, 244 (1984), 454 | DOI | MR

[5] Parkes A., West P., “Finiteness in rigid supersymmetric theories”, Phys. Lett. B, 138 (1984), 99 | DOI | MR

[6] Jack I., Jones D.R.T., North C.G., “$N=1$ supersymmetry and the three-loop gauge $\beta $-function”, Phys. Lett. B, 386 (1996), 138 | DOI

[7] Jack I., Jones D.R.T., North C.G., “$N=1$ supersymmetry and the three-loop anomalous dimension for the chiral superfield”, Nucl. Phys. B, 473 (1996), 308 | DOI | MR | Zbl

[8] Jack I., Jones D.R.T., North C.G., “Scheme dependence and the NSVZ $\beta $-function”, Nucl. Phys. B, 486 (1997), 479 | DOI

[9] Jack I., Jones D.R.T., Pickering A., “The connection between the DRED and NSVZ renormalisation schemes”, Phys. Lett. B, 435 (1998), 61 | DOI | MR

[10] Siegel W., “Inconsistency of supersymmetric dimensional regularization”, Phys. Lett. B, 94 (1980), 37 | DOI | MR

[11] Stöckinger D., “Regularization by dimensional reduction: consistency, quantum action principle, and supersymmetry”, J. High Energy Phys., 2005, no. 3, 076 | DOI | MR

[12] Hollik W., Stöckinger D., “MSSM Higgs-boson mass predictions and two-loop non-supersymmetric counterterms”, Phys. Lett. B, 634 (2006), 63 | DOI

[13] Signer A., Stöckinger D., “Factorization and regularization by dimensional reduction”, Phys. Lett. B, 626 (2005), 127 | DOI

[14] Mas J., Seijas C., Pérez-Victoria M., “The beta function of $N=1$ SYM in differential renormalization”, J. High Energy Phys., 2002, no. 3, 049 | DOI | MR

[15] Freedman D.Z., Johnson K., Latorre J., “Differential regularization and renormalization: A new method of calculation in quantum field theory”, Nucl. Phys. B, 371 (1992), 353 | DOI | MR

[16] Slavnov A.A., “Invariant regularization of non-linear chiral theories”, Nucl. Phys. B, 31 (1971), 301 | DOI | MR

[17] Slavnov A.A., “Invariantnaya regulyarizatsiya kalibrovochnykh teorii”, TMF, 13:2 (1972), 174

[18] Krivoschekov V.K., “Invariantnaya regulyarizatsiya dlya supersimmetrichnykh kalibrovochnykh teorii”, TMF, 36:3 (1978), 291 | MR

[19] West P., “Higher derivative regulation of supersymmetric theories”, Nucl. Phys. B, 268 (1986), 113 | DOI | MR

[20] Martin C.P., Ruiz Ruiz F., “Higher covariant derivative Pauli–Villars regularization does not lead to a consistent QCD”, Nucl. Phys. B, 436 (1995), 545 | DOI

[21] Asorey M., Falceto F., “Consistency of the regularization of gauge theories by high covariant derivatives”, Phys. Rev. D, 54 (1996), 5290 | DOI

[22] Bakeyev T.D., Slavnov A.A., “Higher covariant derivative regularization revisited”, Mod. Phys. Lett. A, 11 (1996), 1539 | DOI

[23] Gross D.J., Wilczek F., “Ultraviolet behavior of non-Abelian gauge theories”, Phys. Rev. Lett., 30 (1973), 1343 | DOI

[24] Politzer H.D., “Reliable perturbative results for strong interactions?”, Phys. Rev. Lett., 30 (1973), 1346 | DOI

[25] Pronin P.I., Stepanyantz K.V., “One-loop counterterms for higher derivative regularized Lagrangians”, Phys. Lett. B, 414 (1997), 117 | DOI

[26] Arnone S., Morris T.R., Rosten O.J., “Manifestly gauge invariant QED”, J. High Energy Phys., 2005, no. 10, 115 | DOI | MR

[27] Morris T.R., Rosten O.J., “Manifestly gauge-invariant QCD”, J. Phys. A, 39 (2006), 11657 | DOI | MR | Zbl

[28] Rosten O.J., “On the renormalization of theories of a scalar chiral superfield”, J. High Energy Phys., 2010, no. 3, 004 | DOI | Zbl

[29] Arnone S., Gatti A., Morris T.R., Rosten O.J., “Exact scheme independence at two loops”, Phys. Rev. D, 69 (2004), 065009 | DOI

[30] Morris T.R., Rosten O.J., “A manifestly gauge invariant, continuum calculation of the $SU(N)$ Yang–Mills two-loop $\beta $ function”, Phys. Rev. D, 73 (2006), 065003 | DOI | MR

[31] Arnone S., Kubyshin Y.A., Morris T.R., Tighe J.F., “Gauge-invariant regularization via $SU(N|N)$”, Intern. J. Mod. Phys. A, 17 (2002), 2283 | DOI | MR | Zbl

[32] Soloshenko A.A., Stepanyantz K.V., Three-loop $\beta $-function for $N=1$ supersymmetric electrodynamics, regularized by higher derivatives, E-print, 2003, arXiv: hep-th/0304083

[33] Soloshenko A.A., Stepanyants K.V., “Trekhpetlevaya $\beta $-funktsiya $N=1$ supersimmetrichnoi elektrodinamiki, regulyarizovannoi vysshimi proizvodnymi”, TMF, 140:3 (2004), 437 | DOI | Zbl

[34] Smilga A., Vainshtein A., “Background field calculations and nonrenormalization theorems in 4d supersymmetric gauge theories and their low-dimensional descendants”, Nucl. Phys. B, 704 (2005), 445 | DOI | MR | Zbl

[35] Stepanyants K.V., “Issledovanie problemy anomalii v $N=1$ supersimmetrichnoi elektrodinamike”, TMF, 142:1 (2005), 37 | DOI

[36] Pimenov A.B., Soloshenko A.A., Stepanyants K.V., Shevtsova E.S., “Regulyarizatsiya vysshimi proizvodnymi i kvantovye popravki v $N=1$ supersimmetrichnykh teoriyakh”, Izv. vuzov. Fizika, 51:5 (2008), 5 | MR | Zbl

[37] Pimenov A.B., Shevtsova E.S., Stepanyantz K.V., “Calculation of two-loop $\beta $-function for general $N=1$ supersymmetric Yang–Mills theory with the higher covariant derivative regularization”, Phys. Lett. B, 686 (2010), 293 | DOI | MR

[38] Uest P., Vvedenie v supersimmetriyu i supergravitatsiyu, Mir, M., 1989 | MR

[39] Buchbinder I.L., Kuzenko S.V., Ideas and methods of supersymmetry and supergravity, Taylor Francis, Boca Raton, FL, 1998 | MR

[40] Slavnov A.A., “Universal gauge invariant renormalization”, Phys. Lett. B, 518 (2001), 195 | DOI | Zbl

[41] Slavnov A.A., “Ne zavisyaschaya ot regulyarizatsii kalibrovochno-invariantnaya perenormirovka teorii Yanga–Millsa”, TMF, 130:1 (2002), 3 | DOI | Zbl

[42] Slavnov A.A., Stepanyants K.V., “Universalnaya invariantnaya perenormirovka dlya supersimmetrichnykh teorii”, TMF, 135:2 (2003), 265 | DOI | MR | Zbl

[43] Slavnov A.A., Stepanyants K.V., “Universalnaya invariantnaya perenormirovka dlya supersimmetrichnoi teorii Yanga–Millsa”, TMF, 139:2 (2004), 179 | DOI

[44] Slavnov A.A., Faddeev L.D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR

[45] Arkani-Hamed N., Murayama H., “Holomorphy, rescaling anomalies and exact $\beta $ functions in supersymmetric gauge theories”, J. High Energy Phys., 2000, no. 6, 030 | DOI | MR | Zbl

[46] Novikov V.A., Shifman M.A., Vainshtein A.I., Zakharov V.I., “Exact Gell-Mann–Low function of supersymmetric Yang–Mills theories from instanton calculus”, Nucl. Phys. B, 229 (1983), 381 | DOI

[47] Novikov V.A., Shifman M.A., Vainshtein A.I., Zakharov V.I., “The beta function in supersymmetric gauge theories: Instantons versus traditional approach”, Phys. Lett. B, 166 (1986), 329 | DOI

[48] Shifman M.A., Vainshtein A.I., “Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion”, Nucl. Phys. B, 277 (1986), 456 | DOI

[49] Pimenov A.B., Stepanyants K.V., “Chetyrekhpetlevaya proverka algoritma summirovaniya diagramm Feinmana v $N=1$ supersimmetrichnoi elektrodinamike”, TMF, 147:2 (2006), 290 | DOI | MR