Higher covariant derivative regularization for calculations in supersymmetric theories
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 266-276

Voir la notice de l'article provenant de la source Math-Net.Ru

A variant of the higher covariant derivative regularization is used for calculation of a two-loop $\beta$-function for the general renormalizable $N=1$ supersymmetric theory. It is shown that the $\beta$-function is given by integrals of total derivatives. Partially this can be explained by substituting solutions of Slavnov–Taylor identities into the Schwinger–Dyson equations.
@article{TM_2011_272_a23,
     author = {K. V. Stepanyantz},
     title = {Higher covariant derivative regularization for calculations in supersymmetric theories},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {266--276},
     publisher = {mathdoc},
     volume = {272},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_272_a23/}
}
TY  - JOUR
AU  - K. V. Stepanyantz
TI  - Higher covariant derivative regularization for calculations in supersymmetric theories
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 266
EP  - 276
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_272_a23/
LA  - ru
ID  - TM_2011_272_a23
ER  - 
%0 Journal Article
%A K. V. Stepanyantz
%T Higher covariant derivative regularization for calculations in supersymmetric theories
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 266-276
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_272_a23/
%G ru
%F TM_2011_272_a23
K. V. Stepanyantz. Higher covariant derivative regularization for calculations in supersymmetric theories. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 266-276. http://geodesic.mathdoc.fr/item/TM_2011_272_a23/