On new geometrical concept of local quantum field
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 170-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

The key idea discussed in the paper is the hypothesis that the mass spectrum of elementary particles described by local quantum fields should be cut at some mass value $M$. The new universal parameter $M$ called the “fundamental mass” is introduced in quantum field theory (QFT) in a pure geometric way; namely, in the framework of the Euclidean formulation of QFT we postulate that the 4-momentum space is the de Sitter space with radius $M$. It is of principal importance that the new version of QFT containing the fundamental mass $M$ admits a local gauge invariant Lagrangian formulation and may serve as a basis for generalizing the Standard Model (SM) at high energies $E\ge M$. Some correction terms to the SM Lagrangian, which may be compared in the future with LHC experimental data, are given.
@article{TM_2011_272_a13,
     author = {V. G. Kadyshevsky},
     title = {On new geometrical concept of local quantum field},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {170--179},
     publisher = {mathdoc},
     volume = {272},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_272_a13/}
}
TY  - JOUR
AU  - V. G. Kadyshevsky
TI  - On new geometrical concept of local quantum field
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 170
EP  - 179
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_272_a13/
LA  - en
ID  - TM_2011_272_a13
ER  - 
%0 Journal Article
%A V. G. Kadyshevsky
%T On new geometrical concept of local quantum field
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 170-179
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_272_a13/
%G en
%F TM_2011_272_a13
V. G. Kadyshevsky. On new geometrical concept of local quantum field. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 170-179. http://geodesic.mathdoc.fr/item/TM_2011_272_a13/

[1] Newton T.D., Wigner E.P., “Localized states for elementary systems”, Rev. Mod. Phys., 21 (1949), 400 | DOI | MR | Zbl

[2] Kadyshevsky V.G., Mateev M.D., Rodionov V.N., Sorin A.S., Towards a maximal mass model, Preprint CERN-TH/2007-150, CERN, Geneva, 2007, arXiv: 0708.4205v1 [hep-ph]

[3] Kadyshevsky V.G., “Fundamental length hypothesis and new concept of gauge vector field”, Nucl. Phys. B, 141 (1978), 477 | DOI | MR

[4] Kadyshevsky V.G., “Fundamental length hypothesis in a gauge theory context”, Group theoretical methods in physics, Seventh Intern. Colloq. and Integrative Conf. on Group Theory and Math. Phys., Austin, Texas, 1978, Lect. Notes Phys., 94, Springer, Berlin, 1979, 114–124 | DOI

[5] Kadyshevsky V.G., Toward a more profound theory of electromagnetic interactions, Preprint Fermilab-Pub. 78/070-THY, Fermilab, Batavia, IL, 1978

[6] Kadyshevskii V.G., “Novyi podkhod k teorii elektromagnitnykh vzaimodeistvii”, EChAYa, 11:1 (1980), 5 | MR

[7] Kadyshevsky V.G., Mateev M.D., “Local gauge invariant QED with fundamental length”, Phys. Lett. B, 106 (1981), 139 | DOI

[8] Kadyshevsky V.G., Mateev M.D., “Quantum field theory and a new universal high-energy scale. I: The scalar model”, Nuovo Cimento A, 87 (1985), 324 | DOI

[9] Chizhov M.V., Donkov A.D., Ibadov R.M., Kadyshevsky V.G., Mateev M.D., “Quantum field theory and a new universal high-energy scale. II: Gauge vector fields”, Nuovo Cimento A, 87 (1985), 350 | DOI

[10] Chizhov M.V., Donkov A.D., Ibadov R.M., Kadyshevsky V.G., Mateev M.D., “Quantum field theory and a new universal high-energy scale. III: Dirac fields”, Nuovo Cimento A, 87 (1985), 373 | DOI

[11] Kadyshevskii V.G., “K voprosu o konechnosti spektra mass elementarnykh chastits”, EChAYa, 29:3 (1998), 563