Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_272_a10, author = {Dmitry V. Gal'tsov and Evgeny A. Davydov}, title = {Cosmological models with {Yang--Mills} fields}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {129--151}, publisher = {mathdoc}, volume = {272}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2011_272_a10/} }
TY - JOUR AU - Dmitry V. Gal'tsov AU - Evgeny A. Davydov TI - Cosmological models with Yang--Mills fields JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 129 EP - 151 VL - 272 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2011_272_a10/ LA - ru ID - TM_2011_272_a10 ER -
Dmitry V. Gal'tsov; Evgeny A. Davydov. Cosmological models with Yang--Mills fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 129-151. http://geodesic.mathdoc.fr/item/TM_2011_272_a10/
[1] Starobinskii A.A., “Spektr reliktovogo gravitatsionnogo izlucheniya i nachalnoe sostoyanie Vselennoi”, Pisma v ZhETF, 30:11 (1979), 719
[2] Starobinsky A.A., “A new type of isotropic cosmological models without singularity”, Phys. Lett. B., 91 (1980), 99 | DOI
[3] Guth A.H., “Inflationary universe: A possible solution to the horizon and flatness problems”, Phys. Rev. D, 23 (1981), 347 | DOI
[4] Linde A.D., “A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems”, Phys. Lett. B, 108 (1982), 389 | DOI | MR
[5] Albrecht A., Steinhardt P.J., “Cosmology for grand unified theories with radiatively induced symmetry breaking”, Phys. Rev. Lett., 48 (1982), 1220 | DOI
[6] Kinney W.H., TASI lectures on inflation, E-print, 2009, arXiv: 0902.1529 [astro-ph.CO]
[7] Baumann D., Peiris H.V., Cosmological inflation: Theory and observations, E-print, 2008, arXiv: 0810.3022 [astro-ph]
[8] Linde A., “Inflationary cosmology”, Inflationary cosmology, Lect. Notes Phys., 738, Springer, Berlin, 2008, 1–54, arXiv: 0705.0164 [hep-th] | DOI | MR | Zbl
[9] Copeland E.J., Sami M., Tsujikawa S., “Dynamics of dark energy”, Intern. J. Mod. Phys. D., 15 (2006), 1753, arXiv: hep-th/0603057 | DOI | MR | Zbl
[10] Trodden M., Carroll S.M., TASI lectures: Introduction to cosmology, E-print, 2004, arXiv: astro-ph/0401547 | MR
[11] Ford L.H., “Inflation driven by a vector field”, Phys. Rev. D, 40 (1989), 967 | DOI
[12] Armendáriz-Picón C., “Could dark energy be vector-like?”, J. Cosmol. and Astropart. Phys., 2004, no. 7, 007, arXiv: astro-ph/0405267 | DOI
[13] Kiselev V.V., “Vector field as a quintessence partner”, Class. and Quantum Grav., 21 (2004), 3323, arXiv: gr-qc/0402095 | DOI | MR | Zbl
[14] Wei H., Cai R.-G., “Interacting vectorlike dark energy, the first and second cosmological coincidence problems”, Phys. Rev. D, 73 (2006), 083002, arXiv: astro-ph/0603052 | DOI
[15] Wei H., Cai R.-G., “Cheng–Weyl vector field and its cosmological application”, J. Cosmol. and Astropart. Phys., 2007, no. 9, 015, arXiv: astro-ph/0607064 | DOI
[16] Jiménez J.B., Maroto A.L., A cosmic vector for dark energy, E-print, 2008, arXiv: 0801.1486 [astro-ph]
[17] Koivisto T.S., Mota D.F., Vector field models of inflation and dark energy, E-print, 2008, arXiv: 0805.4229 [astro-ph] | MR
[18] Jiménez J.B., Lazkoz R., Maroto A.L., Cosmic vector for dark energy: constraints from SN, CMB and BAO, E-print, 2009, arXiv: 0904.0433 [astro-ph.CO]
[19] Linde A.D., “Classical Yang–Mills solutions, condensation of W mesons and symmetry of composition of superdense matter”, Phys. Lett. B, 86 (1979), 39 | DOI
[20] Gal'tsov D.V., Volkov M.S., “Yang–Mills cosmology. Cold matter for a hot universe”, Phys. Lett. B, 256 (1991), 17 | DOI | MR
[21] Zhao W., Zhang Y., “The state equation of Yang–Mills field dark energy models”, Class. and Quantum Grav., 23 (2006), 3405, arXiv: astro-ph/0510356 | DOI | MR | Zbl
[22] Zhang Y., Xia T.Y., Zhao W., “Yang–Mills condensate dark energy coupled with matter and radiation”, Class. and Quantum Grav., 24 (2007), 3309, arXiv: gr-qc/0609115 | DOI | MR | Zbl
[23] Zhao W., Xu D., “Evolution of the magnetic component in Yang–Mills condensate dark energy models”, Intern. J. Mod. Phys. D, 16 (2007), 1735, arXiv: gr-qc/0701136 | DOI | Zbl
[24] Bamba K., Nojiri S., Odintsov S.D., “Inflationary cosmology and the late-time accelerated expansion of the universe in nonminimal Yang–Mills–$F(R)$ gravity and nonminimal vector–$F(R)$ gravity”, Phys. Rev. D, 77 (2008), 123532, arXiv: 0803.3384 [hep-th] | DOI
[25] Gal'tsov D.V., Non-Abelian condensates as alternative for dark energy, E-print, 2009, arXiv: 0901.0115 [gr-qc]
[26] De Lorenci V.A., Nonsingular and accelerated expanding universe from effective Yang–Mills theory, E-print, 2009, arXiv: 0902.2672 [gr-qc] | Zbl
[27] Xia T.Y., Zhang Y., “2-loop quantum Yang–Mills condensate as dark energy”, Phys. Lett. B, 656 (2007), 19, arXiv: 0710.0077 [astro-ph] | DOI | MR | Zbl
[28] Wang S., Zhang Y., Xia T.Y., “The three-loop Yang–Mills condensate dark energy model and its cosmological constraints”, J. Cosmol. and Astropart. Phys., 2008, no. 10, 037, arXiv: 0803.2760 [gr-qc] | DOI
[29] Zhao W., “Statefinder diagnostic for the Yang–Mills dark energy model”, Intern. J. Mod. Phys. D., 17 (2008), 1245, arXiv: 0711.2319 [gr-qc] | DOI | Zbl
[30] Tong M., Zhang Y., Xia T., “Statefinder parameters for the quantum effective Yang–Mills condensate dark energy model”, Intern. J. Mod. Phys. D, 18 (2009), 797, arXiv: 0809.2123 [gr-qc] | DOI | Zbl
[31] Zhao W., “Attractor solution in coupled Yang–Mills field dark energy models”, Intern. J. Mod. Phys. D, 18 (2009), 1331, arXiv: 0810.5506 | DOI | MR | Zbl
[32] Zhao W., Zhang Y., Tong M., Quantum Yang–Mills condensate dark energy models, E-print, 2009, arXiv: 0909.3874 [astro-ph.CO]
[33] Cervero J., Jacobs L., “Classical Yang–Mills fields in a Robertson–Walker universe”, Phys. Lett. B, 78 (1978), 427 | DOI
[34] Henneaux M., “Remarks on spacetime symmetries and nonabelian gauge fields”, J. Math. Phys., 23 (1982), 830 | DOI | MR | Zbl
[35] Hosotani Y., “Exact solution to the Einstein–Yang–Mills equation”, Phys. Lett. B, 147 (1984), 44 | DOI | MR
[36] Moniz P.V., Mourão J.M., “Homogeneous and isotropic closed cosmologies with a gauge sector”, Class. and Quantum Grav., 8 (1991), 1815 | DOI | MR
[37] Bertolami O., Kubyshin Yu.A., Mourão J.M., “Stability of compactification in Einstein–Yang–Mills theories after inflation”, Phys. Rev. D, 45 (1992), 3405 | DOI | MR
[38] Moniz P.V., Mourão J.M., Sá P.M., “The dynamics of a flat Friedmann–Robertson–Walker inflationary model in the presence of gauge fields”, Class. and Quantum Grav., 10 (1993), 517 | DOI | MR
[39] Cavaglià M., de Alfaro V., “On a quantum miniuniverse filled with Yang–Mills radiation”, Mod. Phys. Lett. A, 9 (1994), 569, arXiv: gr-qc/9310001 | DOI | MR
[40] Bertolami O., Moniz P.V., “Decoherence of Friedmann–Robertson–Walker geometries in the presence of massive vector fields with $\mathrm U(1)$ or $\mathrm {SO}(3)$ global symmetries”, Nucl. Phys. B, 439 (1995), 259, arXiv: gr-qc/9410027 | DOI | MR | Zbl
[41] Kapetanakis D., Koutsoumbas G., Lukas A., Mayr P., “Quantum cosmology with Yang–Mills fields”, Nucl. Phys. B, 433 (1995), 435, arXiv: hep-th/9403131 | DOI | MR | Zbl
[42] Bento M.C., Bertolami O., “General cosmological features of the Einstein–Yang–Mills dilaton system in string theories”, Phys. Lett. B, 336 (1994), 6, arXiv: gr-qc/9405038 | DOI | MR
[43] Cavaglià M., de Alfaro V., Filippov A.T., “Quantization of the Robertson–Walker universe”, Quantum systems: New trends and methods, World Sci., London, 1995, 31–46 | MR
[44] Darian B.K., Künzle H.P., “Cosmological Einstein–Yang–Mills equations”, J. Math. Phys., 38 (1997), 4696, arXiv: gr-qc/9610026 | DOI | MR | Zbl
[45] Moniz P.V., Quantization of a Friedmann–Robertson–Walker model with gauge fields in $N=1$ supergravity, E-print, 1996, arXiv: gr-qc/9604045 | MR
[46] Moniz P.V., “FRW model with vector fields in $N=1$ supergravity”, Helv. Phys. Acta., 69 (1996), 293 | MR | Zbl
[47] Künzle H.P., “$\mathrm {SU}(n)$–Einstein–Yang–Mills fields with spherical symmetry”, Class. and Quantum Grav., 8 (1991), 2283 | DOI | MR | Zbl
[48] Füzfa A., “Gravitational instability of Yang–Mills cosmologies”, Class. and Quantum Grav., 20 (2003), 4753, arXiv: gr-qc/0310032 | DOI | MR | Zbl
[49] Zhao W., “Perturbations of the Yang–Mills field in the universe”, Res. Astron. and Astrophys., 9 (2009), 874, arXiv: astro-ph/0508010 | DOI | MR
[50] Jiménez J.B., Koivisto T.S., Maroto A.L., Mota D.F., Perturbations in electromagnetic dark energy, E-print, 2009, arXiv: 0907.3648 [physics.gen-ph]
[51] Gibbons G.W., Steif A.R., “Yang–Mills cosmologies and collapsing gravitational sphalerons”, Phys. Lett. B, 320 (1994), 245, arXiv: hep-th/9311098 | DOI | MR
[52] Volkov M.S., “Einstein–Yang–Mills sphalerons and fermion number non-conservation”, Phys. Lett. B, 328 (1994), 89, arXiv: hep-th/9312005 | DOI
[53] Volkov M.S., “Computation of the winding number diffusion rate due to the cosmological sphaleron”, Phys. Rev. D, 54 (1996), 5014, arXiv: hep-th/9604054 | DOI
[54] Ding S., “Cosmological sphaleron from real tunneling and its fate”, Phys. Rev. D, 50 (1994), 3755, arXiv: gr-qc/9407036 | DOI
[55] Volkov M.S., Gal'tsov D.V., “Gravitating non-Abelian solitons and black holes with Yang–Mills fields”, Phys. Rep., 319 (1999), 1, arXiv: hep-th/9810070 | DOI | MR
[56] Hosoya A., Ogura W., “Wormhole instanton solution in the Einstein–Yang–Mills system”, Phys. Lett. B, 225 (1989), 117 | DOI | MR
[57] Das A., Maharana J., “Wormhole solution in coupled Yang–Mills–axion system”, Phys. Rev. D, 41 (1990), 699 | DOI | MR
[58] Rey S.-J., “Space–time wormholes with Yang–Mills fields”, Nucl. Phys. B, 336 (1990), 146 | DOI | MR
[59] Gupta A.K., Hughes J., Preskill J., Wise M.B., “Magnetic wormholes and topological symmetry”, Nucl. Phys. B, 333 (1990), 195 | DOI
[60] Bertolami O., Mourão J.M., “Euclideanized Einstein–Yang–Mills equations, wormholes and the ground-state wave function of a radiation dominated universe”, The physical universe: The interface between cosmology, astrophysics and particle physics, Proc. XII Autumn School Phys., Lisbon (Portugal), 1990, Lect. Notes Phys., 383, Springer, Berlin, 1991, 21–38 | DOI
[61] Bertolami O., Mourão J.M., Picken R.F., Volobuev I.P., “Dynamics of euclideanized Einstein–Yang–Mills systems with arbitrary gauge groups”, Intern. J. Mod. Phys. A, 6 (1991), 4149 | DOI | MR
[62] Verbin Y., Davidson A., “Quantized non-abelian wormholes”, Phys. Lett. B, 229 (1989), 364 | DOI | MR
[63] Donets E.E., Gal'tsov D.V., “Continuous family of Einstein–Yang–Mills wormholes”, Phys. Lett. B, 294 (1992), 44, arXiv: gr-qc/9209008 | DOI | MR
[64] Donets E.E., Gal'tsov D.V., “Wormhole solutions in coupled Einstein–Yang–Mills axion system”, Classical and quantum gravity, Proc. 1st Iberian Meeting on Gravity, Évora (Portugal), 1992, World Sci., Singapore, 1993, 289–292 | MR
[65] Lukas A., “Wormhole effects on Yang–Mills theory”, Nucl. Phys. B, 442 (1995), 533, arXiv: gr-qc/9407037 | DOI | MR
[66] Kim H., Yoon Y., “Yang–Mills instantons in the gravitational instanton backgrounds”, Phys. Lett. B, 495 (2000), 169, arXiv: hep-th/0002151 | DOI
[67] Kim H., Yoon Y., “Instanton–meron hybrid in the background of gravitational instantons”, Phys. Rev. D, 63 (2001), 125002, arXiv: hep-th/0012055 | DOI | MR
[68] Moniz P.V., “FRW wormhole instantons in the non-Abelian Born–Infeld theory”, Phys. Rev. D, 66 (2002), 064012 | DOI | MR
[69] Mosna R.A., Tavares G.M., “New self-dual solutions of $SU(2)$ Yang–Mills theory in Euclidean Schwarzschild space”, Phys. Rev. D, 80 (2009), 105006, arXiv: 0909.5145 [math-ph] | DOI
[70] Breitenlohner P., Forgács P., Maison D., “Static cosmological solutions of the Einstein–Yang–Mills–Higgs equations”, Phys. Lett. B, 489 (2000), 397, arXiv: gr-qc/0006046 | DOI | MR
[71] Linde A., “Hybrid inflation”, Phys. Rev. D, 49 (1994), 748, arXiv: astro-ph/9307002 | DOI
[72] Liddle A.R., Lyth D.H., Cosmological inflation and large-scale structure, Cambridge Univ. Press, Cambridge, 2000 | MR
[73] Liddle A.R., Leach S.M., “How long before the end of inflation were observable perturbations produced?”, Phys. Rev. D, 68 (2003), 103503, arXiv: astro-ph/0305263 | DOI | MR
[74] Tegmark M., Parallel universes, E-print, 2003, arXiv: astro-ph/0302131 | MR | Zbl
[75] Tegmark M., “Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations”, Sci. Amer., 288:5 (2003), 40 | DOI | MR
[76] Weinberg S., Living in the multiverse, E-print, 2005, arXiv: hep-th/0511037
[77] Tseytlin A.A., “On non-abelian generalisation of the Born–Infeld action in string theory”, Nucl. Phys. B, 501 (1997), 41 | DOI | MR | Zbl
[78] Dyadichev V.V., Gal'tsov D.V., Zorin A.G., Zotov M.Yu., “Non-Abelian Born–Infeld cosmology”, Phys. Rev. D, 65 (2002), 084007, arXiv: hep-th/0111099 | DOI | MR
[79] Gal'tsov D.V., Dyadichev V.V., “Non-Abelian brane cosmology”, Astrophys. and Space Sci., 283 (2003), 667, arXiv: hep-th/0301044 | DOI
[80] Füzfa A., Alimi J.-M., “Non-Abelian Einstein–Born–Infeld dilaton cosmology”, Phys. Rev. D, 73 (2006), 023520, arXiv: gr-qc/0511090 | DOI
[81] Füzfa A., Alimi J.-M., “Dark energy as a Born–Infeld gauge interaction violating the equivalence principle”, Phys. Rev. Lett., 97 (2006), 061301, arXiv: astro-ph/0604517 | DOI | MR | Zbl
[82] Novello M., Goulart E., Salim J.M., Perez Bergliaffa S.E., “Cosmological effects of nonlinear electrodynamics”, Class. and Quantum Grav., 24 (2007), 3021, arXiv: gr-qc/0610043 | DOI | MR | Zbl
[83] Elizalde E., Lidsey J.E., Nojiri S., Odintsov S.D., “Born–Infeld quantum condensate as dark energy in the universe”, Phys. Lett. B, 574 (2003), 1, arXiv: hep-th/0307177 | DOI | MR | Zbl
[84] Klinkhamer F.R., Volovik G.E., “Gluonic vacuum, $q$-theory, and the cosmological constant”, Phys. Rev. D, 79 (2009), 063527, arXiv: 0811.4347 [gr-qc] | DOI
[85] Gal'tsov D.V., Dyadichev V.V., “Stabilization of Yang–Mills chaos in non-Abelian Born–Infeld theory”, Pisma v ZhETF, 77:4 (2003), 184 ; JETP Lett., 77 (2003), 154–157 ; arXiv: hep-th/0301069 | DOI | Zbl
[86] Dyadichev V.V., Gal'tsov D.V., Vargas Moniz P., “Chaos–order transition in Bianchi type I non-Abelian Born–Infeld cosmology”, Phys. Rev. D, 72 (2005), 084021, arXiv: hep-th/0412334 | DOI | MR
[87] Dyadichev V.V., Gal'tsov D.V., Moniz P.V., “New features about chaos in Bianchi I non-Abelian Born–Infeld cosmology”, AIP Conf. Proc., 861 (2006), 312 | DOI
[88] Tipler F.J., “The structure of the world from pure numbers”, Rep. Prog. Phys., 68 (2005), 897, arXiv: 0704.3276 [hep-th] | DOI | MR